Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
mBio ; 15(5): e0017024, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38564699

RESUMEN

Penicillin-binding protein 5 (PBP5) of Enterococcus faecium (Efm) is vital for ampicillin resistance (AMP-R). We previously designated three forms of PBP5, namely, PBP5-S in Efm clade B strains [ampicillin susceptible (AMP-S)], PBP5-S/R (AMP-S or R), and PBP5-R (AMP-R) in clade A strains. Here, pbp5 deletion resulted in a marked reduction in AMP minimum inhibitory concentrations (MICs) to 0.01-0.09 µg/mL for clade B and 0.12-0.19 µg/mL for clade A strains; in situ complementation restored parental AMP MICs. Using D344SRF (lacking ftsW/psr/pbp5), constructs with ftsWA/psrA (from a clade A1 strain) cloned upstream of pbp5-S and pbp5-S/R alleles resulted in modest increases in MICs to 3-8 µg/mL, while high MICs (>64 µg/mL) were seen using pbp5 from A1 strains. Next, using ftsW ± psr from clade B and clade A/B and B/A hybrid constructs, the presence of psrB, even alone or in trans, resulted in much lower AMP MICs (3-8 µg/mL) than when psrA was present (MICs >64 µg/mL). qRT PCR showed relatively greater pbp5 expression (P = 0.007) with pbp5 cloned downstream of clade A1 ftsW/psr (MIC >128 µg/mL) vs when cloned downstream of clade B ftsW/psr (MIC 4-16 µg/mL), consistent with results in western blots. In conclusion, we report the effect of clade A vs B psr on AMP MICs as well as the impact of pbp5 alleles from different clades. While previously, Psr was not thought to contribute to AMP MICs in Efm, our results showed that the presence of psrB resulted in a major decrease in Efm AMP MICs. IMPORTANCE: The findings of this study shed light on ampicillin resistance in Enterococcus faecium clade A strains. They underscore the significance of alterations in the amino acid sequence of penicillin-binding protein 5 (PBP5) and the pivotal role of the psr region in PBP5 expression and ampicillin resistance. Notably, the presence of a full-length psrB leads to reduced PBP5 expression and lower minimum inhibitory concentrations (MICs) of ampicillin compared to the presence of a shorter psrA, regardless of the pbp5 allele involved. Additionally, clade B E. faecium strains exhibit lower AMP MICs when both psr alleles from clades A and B are present, although it is important to consider other distinctions between clade A and B strains that may contribute to this effect. It is intriguing to note that the divergence between clade A and clade B E. faecium and the subsequent evolution of heightened AMP MICs in hospital-associated strains appear to coincide with changes in Pbp5 and psr. These changes in psr may have resulted in an inactive Psr, facilitating increased PBP5 expression and greater ampicillin resistance. These results raise the possibility that a mimicker of PsrB, if one could be designed, might be able to lower MICs of ampicillin-resistant E. faecium, thus potentially resorting ampicillin to our therapeutic armamentarium for this species.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Enterococcus faecium , Pruebas de Sensibilidad Microbiana , Proteínas de Unión a las Penicilinas , Resistencia betalactámica , Enterococcus faecium/genética , Enterococcus faecium/efectos de los fármacos , Enterococcus faecium/metabolismo , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Resistencia betalactámica/genética , Ampicilina/farmacología , Genoma Bacteriano
2.
J Infect Dis ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578967

RESUMEN

Enterococci have evolved resistance mechanisms to protect their cell envelopes against bacteriocins and host cationic antimicrobial peptides (CAMPs) produced in the gastrointestinal environment. Activation of the membrane stress response has also been tied to resistance to the lipopeptide antibiotic daptomycin. However, the actual effectors mediating resistance have not been elucidated. Here, we show that the MadRS (formerly YxdJK) membrane antimicrobial peptide defense system controls a network of genes, including a previously uncharacterized three gene operon (madEFG) that protects the E. faecalis cell envelope from antimicrobial peptides. Constitutive activation of the system confers protection against CAMPs and daptomycin in the absence of a functional LiaFSR system and leads to persistence of cardiac microlesions in vivo. Moreover, changes in the lipid cell membrane environment alter CAMP susceptibility and expression of the MadRS system. Thus, we provide a framework supporting a multilayered envelope defense mechanism for resistance and survival coupled to virulence.

3.
Antimicrob Agents Chemother ; 68(3): e0106923, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38289081

RESUMEN

Daptomycin (DAP) is often used as a first-line therapy to treat vancomycin-resistant Enterococcus faecium infections, but emergence of DAP non-susceptibility threatens the effectiveness of this antibiotic. Moreover, current methods to determine DAP minimum inhibitory concentrations (MICs) have poor reproducibility and accuracy. In enterococci, DAP resistance is mediated by the LiaFSR cell membrane stress response system, and deletion of liaR encoding the response regulator results in hypersusceptibility to DAP and antimicrobial peptides. The main genes regulated by LiaR are a cluster of three genes, designated liaXYZ. In Enterococcus faecalis, LiaX is surface-exposed with a C-terminus that functions as a negative regulator of cell membrane remodeling and an N-terminal domain that is released to the extracellular medium where it binds DAP. Thus, in E. faecalis, LiaX functions as a sentinel molecule recognizing DAP and controlling the cell membrane response, but less is known about LiaX in E. faecium. Here, we found that liaX is essential in E. faecium with an activated LiaFSR system. Unlike E. faecalis, E. faecium LiaX is not detected in the extracellular milieu and does not appear to alter phospholipid architecture. We further postulated that LiaX could be used as a surrogate marker for cell envelope activation and non-susceptibility to DAP. For this purpose, we developed and optimized a LiaX enzyme-linked immunosorbent assay (ELISA). We then assessed 86 clinical E. faecium bloodstream isolates for DAP MICs and used whole genome sequencing to assess for substitutions in LiaX. All DAP-resistant clinical strains of E. faecium exhibited elevated LiaX levels. Strikingly, 73% of DAP-susceptible isolates by standard MIC determination also had elevated LiaX ELISAs compared to a well-characterized DAP-susceptible strain. Phylogenetic analyses of predicted amino acid substitutions showed 12 different variants of LiaX without a specific association with DAP MIC or LiaX ELISA values. Our findings also suggest that many E. faecium isolates that test DAP susceptible by standard MIC determination are likely to have an activated cell stress response that may predispose to DAP failure. As LiaX appears to be essential for the cell envelope response to DAP, its detection could prove useful to improve the accuracy of susceptibility testing by anticipating therapeutic failure.


Asunto(s)
Daptomicina , Enterococcus faecium , Infecciones por Bacterias Grampositivas , Humanos , Daptomicina/farmacología , Daptomicina/uso terapéutico , Filogenia , Reproducibilidad de los Resultados , Farmacorresistencia Bacteriana/genética , Antibacterianos/uso terapéutico , Membrana Celular , Biomarcadores/metabolismo , Pruebas de Sensibilidad Microbiana , Enterococcus faecalis , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/metabolismo
4.
bioRxiv ; 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37904970

RESUMEN

Enterococci have evolved resistance mechanisms to protect their cell envelopes against bacteriocins and host cationic antimicrobial peptides (CAMPs) produced in the gastrointestinal environment. Activation of the membrane stress response has also been tied to resistance to the lipopeptide antibiotic daptomycin. However, the actual effectors mediating resistance have not been elucidated. Here, we show that the MadRS (formerly YxdJK) membrane antimicrobial peptide defense system controls a network of genes, including a previously uncharacterized three gene operon (madEFG) that protects the E. faecalis cell envelope from antimicrobial peptides. Constitutive activation of the system confers protection against CAMPs and daptomycin in the absence of a functional LiaFSR system and leads to persistence of cardiac microlesions in vivo. Moreover, changes in the lipid cell membrane environment alter CAMP susceptibility and expression of the MadRS system. Thus, we provide a framework supporting a multilayered envelope defense mechanism for resistance and survival coupled to virulence.

5.
bioRxiv ; 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37645818

RESUMEN

Daptomycin (DAP) is often used as a first line therapy to treat vancomycin-resistant Enterococcus faecium (VR Efm ) infections but emergence of DAP non-susceptibility threatens the effectiveness of this antibiotic. Moreover, current methods to determine DAP MICs have poor reproducibility and accuracy. In enterococci, DAP resistance is mediated by the LiaFSR cell membrane stress response system and deletion of liaR encoding the response regulator results in hypersusceptibility to DAP and antimicrobial peptides. The main genes regulated by LiaR are a cluster of three genes, designated liaXYZ . In Enterococcus faecalis , LiaX is surface exposed with a C-terminus that functions as a negative regulator of cell membrane remodeling and an N-terminal domain that is released to the extracellular medium where it binds DAP. Thus, in E. faecalis , LiaX functions as a sentinel molecule recognizing DAP and controlling the cell membrane response, but less is known about LiaX in E. faecium . Here, we found that liaX is essential in E. faecium ( Efm ) with an activated LiaFSR system. Unlike E. faecalis , Efm LiaX is not detected in the extracellular milieu and does not appear to alter phospholipid architecture. We further postulated that LiaX could be used as a surrogate marker for cell envelope activation and non-susceptibility to DAP. For this purpose, we developed and optimized a LiaX ELISA. We then assessed 86 clinical E. faecium BSI isolates for DAP MICs and used whole genome sequencing to assess for substitutions in LiaX. All DAP-R clinical strains of E. faecium exhibited elevated LiaX levels. Strikingly, 73% of DAP-S isolates by standard MIC determination had elevated LiaX ELISAs above the established cut-off. Phylogenetic analyses of predicted amino acid substitutions showed 12 different variants of LiaX without a specific association with DAP MIC or LiaX ELISA values. Our findings also suggest that many Efm isolates that test DAP susceptible by standard MIC determination are likely to have an activated cell stress response that may predispose to DAP failure. As LiaX appears to be essential for the cell envelope response to DAP, its detection could prove useful to improve the accuracy of susceptibility testing by anticipating therapeutic failure.

7.
Antimicrob Agents Chemother ; 66(11): e0090322, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36255277

RESUMEN

Previously, we showed that Enterococcus faecium clade B strains outcompeted health care-associated clade A1 strains in murine gastrointestinal colonization. Here, parenterally administered piperacillin-tazobactam and ceftriaxone significantly promoted colonization by clade A1 over clade B strains except that ceftriaxone, at the dose used, did not favor the least ß-lactam-resistant A1 strain. The advantage that ß-lactam administration gives to more highly ampicillin-resistant E. faecium over ampicillin-susceptible strains mirrors what occurs in hospitalized patients administered these antibiotics.


Asunto(s)
Enterococcus faecium , Ratones , Animales , Ceftriaxona/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Monobactamas , beta-Lactamas/farmacología , Ampicilina/farmacología , Tracto Gastrointestinal
8.
Antimicrob Agents Chemother ; 65(9): e0070921, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34125596

RESUMEN

Omadacycline (OMC) showed better in vitro potency than daptomycin (DAP) or vancomycin (VAN) against Vanr, Ampr, DAP-nonsusceptible, linezolid-resistant, cfr(B)+ Enterococcus faecium strains. In a mouse peritonitis model, OMC also showed significantly better animal survival during the study and at its end than DAP or VAN with these E. faecium strains. However, OMC, DAP, and VAN showed comparable in vitro and in vivo efficacies against a non-vancomycin-resistant, tetracycline-resistant, DAP-susceptible E. faecium strain.


Asunto(s)
Enterococcus faecium , Infecciones por Bacterias Grampositivas , Peritonitis , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Ratones , Pruebas de Sensibilidad Microbiana , Peritonitis/tratamiento farmacológico , Tetraciclinas/farmacología
9.
Front Cell Infect Microbiol ; 11: 667327, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33996637

RESUMEN

The genus Enterococcus includes two Gram-positive pathogens of particular clinical relevance: E. faecalis and E. faecium. Infections with each of these pathogens are becoming more frequent, particularly in the case of hospital-acquired infections. Like most other bacterial species of clinical importance, antimicrobial resistance (and, specifically, multi-drug resistance) is an increasing threat, with both species considered to be of particular importance by the World Health Organization and the US Centers for Disease Control. The threat of antimicrobial resistance is exacerbated by the staggering difference in the speeds of development for the discovery and development of the antimicrobials versus resistance mechanisms. In the search for alternative strategies, modulation of host-pathogen interactions in general, and virulence inhibition in particular, have drawn substantial attention. Unfortunately, these approaches require a fairly comprehensive understanding of virulence determinants. This requirement is complicated by the fact that enterococcal infection models generally require vertebrates, making them slow, expensive, and ethically problematic, particularly when considering the thousands of animals that would be needed for the early stages of experimentation. To address this problem, we developed the first high-throughput C. elegans-E. faecium infection model involving host death. Importantly, this model recapitulates many key aspects of murine peritonitis models, including utilizing similar virulence determinants. Additionally, host death is independent of peroxide production, unlike other E. faecium-C. elegans virulence models, which allows the assessment of other virulence factors. Using this system, we analyzed a panel of lab strains with deletions of targeted virulence factors. Although removal of certain virulence factors (e.g., Δfms15) was sufficient to affect virulence, multiple deletions were generally required to affect pathogenesis, suggesting that host-pathogen interactions are multifactorial. These data were corroborated by genomic analysis of selected isolates with high and low levels of virulence. We anticipate that this platform will be useful for identifying new treatments for E. faecium infection.


Asunto(s)
Enterococcus faecium , Infecciones por Bacterias Grampositivas , Animales , Antibacterianos/farmacología , Caenorhabditis elegans , Farmacorresistencia Bacteriana , Enterococcus , Enterococcus faecalis , Ratones , Pruebas de Sensibilidad Microbiana , Factores de Virulencia
10.
Antimicrob Agents Chemother ; 65(7): e0026921, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33972239

RESUMEN

In a mouse urinary tract infection model, omadacycline (OMC) was comparable to gentamicin and better than ciprofloxacin (CIP) against a tetracycline-susceptible (TET-S), CIP-resistant (CIP-R) Escherichia coli strain. Gentamicin showed better efficacy than OMC against a TET-R, CIP-R E. coli strain, and OMC again showed better efficacy than CIP against this strain. OMC may warrant further study as a potential option for urinary tract infection treatment against CIP-R E. coli strains.


Asunto(s)
Escherichia coli , Infecciones Urinarias , Animales , Ratones , Pruebas de Sensibilidad Microbiana , Tetraciclinas/farmacología , Tetraciclinas/uso terapéutico , Infecciones Urinarias/tratamiento farmacológico
11.
J Infect Dis ; 223(3): 508-516, 2021 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-32597945

RESUMEN

Enterococcus  faecalis is a significant cause of hospital-acquired bacteremia. Herein, the discovery is reported that cardiac microlesions form during severe bacteremic E. faecalis infection in mice. The cardiac microlesions were identical in appearance to those formed by Streptococcus pneumoniae during invasive pneumococcal disease. However, E. faecalis does not encode the virulence determinants implicated in pneumococcal microlesion formation. Rather, disulfide bond forming protein A (DsbA) was found to be required for E. faecalis virulence in a Caenorhabditis elegans model and was necessary for efficient cardiac microlesion formation. Furthermore, E. faecalis promoted cardiomyocyte apoptotic and necroptotic cell death at sites of microlesion formation. Additionally, loss of DsbA caused an increase in proinflammatory cytokines, unlike the wild-type strain, which suppressed the immune response. In conclusion, we establish that E. faecalis is capable of forming cardiac microlesions and identify features of both the bacterium and the host response that are mechanistically involved.


Asunto(s)
Bacteriemia/microbiología , Bacteriemia/patología , Enterococcus faecalis/patogenicidad , Cardiopatías/microbiología , Cardiopatías/patología , Corazón , Animales , Apoptosis , Proteínas Bacterianas/metabolismo , Caenorhabditis elegans/microbiología , Muerte Celular , Citocinas , Modelos Animales de Enfermedad , Infecciones por Bacterias Grampositivas/microbiología , Infecciones por Bacterias Grampositivas/patología , Ratones , Necroptosis , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/patogenicidad , Tiorredoxinas , Virulencia , Factores de Virulencia
12.
Sci Rep ; 10(1): 16301, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004869

RESUMEN

Enterococcus faecalis is a gram-positive organism responsible for serious infections in humans, but as with many bacterial pathogens, resistance has rendered a number of commonly used antibiotics ineffective. Here, we report the cryo-EM structure of the E. faecalis 70S ribosome to a global resolution of 2.8 Å. Structural differences are clustered in peripheral and solvent exposed regions when compared with Escherichia coli, whereas functional centres, including antibiotic binding sites, are similar to other bacterial ribosomes. Comparison of intersubunit conformations among five classes obtained after three-dimensional classification identifies several rotated states. Large ribosomal subunit protein bL31, which forms intersubunit bridges to the small ribosomal subunit, assumes different conformations in the five classes, revealing how contacts to the small subunit are maintained throughout intersubunit rotation. A tRNA observed in one of the five classes is positioned in a chimeric pe/E position in a rotated ribosomal state. The 70S ribosome structure of E. faecalis now extends our knowledge of bacterial ribosome structures and may serve as a basis for the development of novel antibiotic compounds effective against this pathogen.


Asunto(s)
Enterococcus faecalis/ultraestructura , Subunidades Ribosómicas Grandes/ultraestructura , Antibacterianos/metabolismo , Sitios de Unión , Microscopía por Crioelectrón , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Conformación Proteica , Subunidades Ribosómicas Grandes/metabolismo
13.
J Infect Dis ; 222(9): 1531-1539, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32514561

RESUMEN

BACKGROUND: The combination of daptomycin (DAP) plus ampicillin (AMP), ertapenem (ERT), or ceftaroline has been demonstrated to be efficacious against a DAP-tolerant Enterococcus faecium strain (HOU503). However, the mechanism for the efficacy of these combinations against DAP-resistant (DAP-R) E. faecium strains is unknown. METHODS: We investigated the efficacy of DAP in combination with AMP, ERT, ceftaroline, ceftriaxone, or amoxicillin against DAP-R E. faecium R497 using established in vitro and in vivo models. We evaluated pbp expression, levels of penicillin-binding protein (PBP) 5 (PBP5) and ß-lactam binding affinity in HOU503 versus R497. RESULTS: DAP plus AMP was the only efficacious regimen against DAP-R R497 and prevented emergence of resistance. DAP at 8, 6, and 4 mg/kg in combination with AMP was efficacious but showed delayed killing compared with 10 mg/kg. PBP5 of HOU503 exhibited amino acid substitutions in the penicillin-binding domain relative to R497. No difference in pbp mRNA or PBP5 levels was detected between HOU503 and R497. labeling of PBPs with Bocillin FL, a fluorescent penicillin derivative, showed increased ß-lactam binding affinity of PBP5 of HOU503 compared with that of R497. CONCLUSIONS: Only DAP (10 mg/kg) plus AMP or amoxicillin was efficacious against a DAP-R E. faecium strain, and pbp5 alleles may be important contributors to efficacy of DAP plus ß-lactam therapy.


Asunto(s)
Antibacterianos/farmacología , Daptomicina/farmacología , Enterococcus faecium/efectos de los fármacos , beta-Lactamas/farmacología , Ampicilina/administración & dosificación , Ampicilina/farmacología , Animales , Antibacterianos/administración & dosificación , Cefalosporinas/administración & dosificación , Cefalosporinas/uso terapéutico , Daptomicina/administración & dosificación , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana , Quimioterapia Combinada , Endocarditis Bacteriana/tratamiento farmacológico , Enterococcus faecium/genética , Ertapenem/administración & dosificación , Ertapenem/farmacología , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Ratas , Alineación de Secuencia , Transcriptoma , beta-Lactamas/administración & dosificación , Ceftarolina
14.
Microbiol Resour Announc ; 9(18)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32354985

RESUMEN

Staphylococcus aureus strain TX0117 is a methicillin-susceptible bacterium with type A beta-lactamase exhibiting a high cefazolin inoculum effect. TX0117 was cured of blaZ, yielding TX0117c with increased antimicrobial peptide resistance. The sequencing and genome assembly of TX0117 elucidate six mutations between TX0117 and TX0117c, including relA truncation and mnA_1 substitution.

15.
Artículo en Inglés | MEDLINE | ID: mdl-32122892

RESUMEN

Tedizolid (TZD) and daptomycin (DAP) were assessed in a rat endocarditis model against Enterococcus faecalis, Enterococcus faecium (resistant to vancomycin and ampicillin), and Staphylococcus aureus As a monotherapy, TZD for 5 days was not effective in a comparison with no-treatment controls, while DAP for 5 days was significantly effective against these bacteria. Step-down therapy (DAP for 3 days followed by TZD for 2 days) was as effective as DAP for 5 days and was comparable to 3 days of DAP plus ceftriaxone against all bacteria and to 3 days of DAP plus gentamicin against E. faecalis OG1RF.


Asunto(s)
Antibacterianos/uso terapéutico , Daptomicina/uso terapéutico , Endocarditis Bacteriana/tratamiento farmacológico , Enterococcus , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Staphylococcus aureus Resistente a Meticilina , Oxazolidinonas/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , Tetrazoles/uso terapéutico , Resistencia a la Vancomicina , Staphylococcus aureus Resistente a Vancomicina , Animales , Antibacterianos/farmacología , Recuento de Colonia Microbiana , Daptomicina/farmacología , Endocarditis Bacteriana/microbiología , Enterococcus/efectos de los fármacos , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecium/efectos de los fármacos , Infecciones por Bacterias Grampositivas/microbiología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Oxazolidinonas/farmacología , Ratas , Infecciones Estafilocócicas/microbiología , Tetrazoles/farmacología
16.
Clin Infect Dis ; 71(6): 1413-1418, 2020 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-31773134

RESUMEN

Cefazolin and ertapenem combination therapy was used successfully to salvage 11 cases (6 endocarditis) of persistent methicillin-susceptible Staphylococcus aureus (MSSA) bacteremia, including immediate clearance (≤24 hours) in 8 cases. While in vitro synergy was modest, cefazolin plus ertapenem exhibited synergistic action in a rat model of MSSA endocarditis. The combination of cefazolin and ertapenem provides potent in vivo activity against MSSA beyond what is predicted in vitro and warrants further clinical study in the treatment of refractory MSSA bacteremia and endocarditis.


Asunto(s)
Bacteriemia , Infecciones Estafilocócicas , Animales , Antibacterianos/uso terapéutico , Bacteriemia/tratamiento farmacológico , Cefazolina/uso terapéutico , Ertapenem , Meticilina/farmacología , Ratas , Terapia Recuperativa , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus
17.
Proc Natl Acad Sci U S A ; 116(52): 26925-26932, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31818937

RESUMEN

Bacteria have developed several evolutionary strategies to protect their cell membranes (CMs) from the attack of antibiotics and antimicrobial peptides (AMPs) produced by the innate immune system, including remodeling of phospholipid content and localization. Multidrug-resistant Enterococcus faecalis, an opportunistic human pathogen, evolves resistance to the lipopeptide daptomycin and AMPs by diverting the antibiotic away from critical septal targets using CM anionic phospholipid redistribution. The LiaFSR stress response system regulates this CM remodeling via the LiaR response regulator by a previously unknown mechanism. Here, we characterize a LiaR-regulated protein, LiaX, that senses daptomycin or AMPs and triggers protective CM remodeling. LiaX is surface exposed, and in daptomycin-resistant clinical strains, both LiaX and the N-terminal domain alone are released into the extracellular milieu. The N-terminal domain of LiaX binds daptomycin and AMPs (such as human LL-37) and functions as an extracellular sentinel that activates the cell envelope stress response. The C-terminal domain of LiaX plays a role in inhibiting the LiaFSR system, and when this domain is absent, it leads to activation of anionic phospholipid redistribution. Strains that exhibit LiaX-mediated CM remodeling and AMP resistance show enhanced virulence in the Caenorhabditis elegans model, an effect that is abolished in animals lacking an innate immune pathway crucial for producing AMPs. In conclusion, we report a mechanism of antibiotic and AMP resistance that couples bacterial stress sensing to major changes in CM architecture, ultimately also affecting host-pathogen interactions.

18.
mBio ; 10(4)2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31266876

RESUMEN

Enterococcus faecalis, a Gram-positive bacterium, and Candida albicans, a polymorphic fungus, are common constituents of the microbiome as well as increasingly problematic causes of infections. Interestingly, we previously showed that these two species antagonize each other's virulence and that E. faecalis inhibition of C. albicans was specifically mediated by EntV. EntV is a bacteriocin encoded by the entV (ef1097) locus that reduces C. albicans virulence and biofilm formation by inhibiting hyphal morphogenesis. In this report, we studied the posttranslational modifications necessary for EntV antifungal activity. First, we show that the E. faecalis secreted enzyme gelatinase (GelE) is responsible for cleaving EntV into its 68-amino-acid, active form and that this process does not require the serine protease SprE. Furthermore, we demonstrate that a disulfide bond that forms within EntV is necessary for antifungal activity. Abrogating this bond by chemical treatment or genetic modification rendered EntV inactive against C. albicans Moreover, we identified the likely catalyst of this disulfide bond, a previously uncharacterized thioredoxin within the E. faecalis genome called DsbA. Loss of DsbA, or disruption of its redox-active cysteines, resulted in loss of EntV antifungal activity. Finally, we show that disulfide bond formation is not a prerequisite for cleavage; EntV cleavage proceeded normally in the absence of DsbA. In conclusion, we present a model in which following secretion, EntV undergoes disulfide bond formation by DsbA and cleavage by GelE in order to generate a peptide capable of inhibiting C. albicansIMPORTANCEEnterococcus faecalis and Candida albicans are among the most important and problematic pathobionts, organisms that normally are harmless commensals but can cause dangerous infections in immunocompromised hosts. In fact, both organisms are listed by the Centers for Disease Control and Prevention as serious global public health threats stemming from the increased prevalence of antimicrobial resistance. The rise in antifungal resistance is of particular concern considering the small arsenal of currently available therapeutics. EntV is a peptide with antifungal properties, and it, or a similar compound, could be developed into a therapeutic alternative, either alone or in combination with existing agents. However, to do so requires understanding what properties of EntV are necessary for its antifungal activity. In this work, we studied the posttranslational processing of EntV and what modifications are necessary for inhibition of C. albicans in order to fill this gap in knowledge.


Asunto(s)
Antifúngicos/metabolismo , Antifúngicos/farmacología , Bacteriocinas/metabolismo , Bacteriocinas/farmacología , Candida albicans/efectos de los fármacos , Enterococcus faecalis/metabolismo , Procesamiento Proteico-Postraduccional , Candida albicans/crecimiento & desarrollo , Disulfuros/metabolismo , Gelatinasas/metabolismo , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Proteolisis
19.
J Infect Dis ; 220(3): 494-504, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-30938438

RESUMEN

Daptomycin resistance in enterococci is often mediated by the LiaFSR system, which orchestrates the cell membrane stress response. Activation of LiaFSR through the response regulator LiaR generates major changes in cell membrane function and architecture (membrane adaptive response), permitting the organism to survive the antibiotic attack. Here, using a laboratory strain of Enterococcus faecalis, we developed a novel Caenorhabditis elegans model of daptomycin therapy and showed that disrupting LiaR-mediated cell membrane adaptation restores the in vivo activity of daptomycin. The LiaR effect was also seen in a clinical strain of daptomycin-resistant Enterococcus faecium, using a murine model of peritonitis. Furthermore, alteration of the cell membrane response increased the ability of human polymorphonuclear neutrophils to readily clear both E. faecalis and multidrug-resistant E. faecium. Our results provide proof of concept that targeting the cell membrane adaptive response restores the in vivo activity of antibiotics, prevents resistance, and enhances the ability of the innate immune system to kill infecting bacteria.


Asunto(s)
Antibacterianos/farmacología , Membrana Celular/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecium/efectos de los fármacos , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Neutrófilos/efectos de los fármacos , Animales , Proteínas Bacterianas , Membrana Celular/microbiología , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Ratones , Pruebas de Sensibilidad Microbiana/métodos , Neutrófilos/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...