Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Hum Gene Ther ; 34(17-18): 782-792, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37672530

RESUMEN

Extensive preclinical research over the past 30 years has culminated in the recent regulatory approval of several gene therapy products for hemophilia. Based on the efficacy and safety data in a recently conducted phase III clinical trial, Roctavian® (valoctocogene roxaparvovec), an adeno-associated viral (AAV5) vector expressing a B domain deleted factor VIII (FVIII) complementary DNA, was approved by the European Commission and Food and Drug Administration (FDA) for the treatment of patients with severe hemophilia A. In addition, Hemgenix® (etranacogene dezaparvovec) was also recently approved by the European Medicines Agency and the FDA for the treatment of patients with severe hemophilia B. This product is based on an AAV5 vector expressing a hyper-active factor IX (FIX) transgene (FIX-Padua) transgene. All AAV-based phase III clinical trials to date show a significant increase in FVIII or FIX levels in the majority of treated patients, consistent with a substantial decrease in bleeding episodes and a concomitant reduction in factor usage obviating the need for factor prophylaxis in most patients. However, significant interpatient variability remains that is not fully understood. Moreover, most patients encountered short-term asymptomatic liver inflammation that was treated by immune suppression with corticosteroids or other immune suppressants. In all phase III trials to date, FIX expression has appeared relatively more stable than FVIII, though individual patients also had prolonged FVIII expression. Whether lifelong expression of clotting factors can be realized after gene therapy requires longer follow-up studies. Further preclinical development of next-generation gene editing technologies offers new prospects for the development of a sustained cure for hemophilia, not only in adults, but ultimately in children with hemophilia too.


Asunto(s)
Hemofilia A , Hemofilia B , Estados Unidos , Adulto , Niño , Humanos , Hemofilia A/genética , Hemofilia A/terapia , Hemofilia B/genética , Hemofilia B/terapia , ADN Complementario , Terapia Genética
2.
Genes (Basel) ; 13(11)2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36360256

RESUMEN

Sandhoff disease (SD) is a fatal neurodegenerative disorder belonging to the family of diseases called GM2 Gangliosidosis. There is no curative treatment of SD. The molecular pathogenesis of SD is still unclear though it is clear that the pathology initiates with the build-up of ganglioside followed by microglial activation, inflammation, demyelination and apoptosis, leading to massive neuronal loss. In this article, we explored the expression profile of selected immune and myelination associated transcripts (Wfdc17, Ccl3, Lyz2, Fa2h, Mog and Ugt8a) at 5-, 10- and 16-weeks, representing young, pre-symptomatic and late stages of the SD mice. We found that immune system related genes (Wfdc17, Ccl3, Lyz2) are significantly upregulated by several fold at all ages in Hexb-KO mice relative to Hexb-het mice, while the difference in the expression levels of myelination related genes is not statistically significant. There is an age-dependent significant increase in expression of microglial/pro-inflammatory genes, from 5-weeks to the near humane end-point, i.e., 16-week time point; while the expression of those genes involved in myelination decreases slightly or remains unchanged. Future studies warrant use of new high-throughput gene expression modalities (such as 10X genomics) to delineate the underlying pathogenesis in SD by detecting gene expression changes in specific neuronal cell types and thus, paving the way for rational and precise therapeutic modalities.


Asunto(s)
Enfermedad de Sandhoff , Transcriptoma , Animales , Ratones , Transcriptoma/genética , Modelos Animales de Enfermedad , Enfermedad de Sandhoff/genética , Enfermedad de Sandhoff/metabolismo , Enfermedad de Sandhoff/patología , Microglía/metabolismo , Encéfalo/metabolismo
3.
Mol Ther ; 30(1): 75-91, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34371182

RESUMEN

CTG repeat expansion (CTGexp) is associated with aberrant alternate splicing that contributes to cardiac dysfunction in myotonic dystrophy type 1 (DM1). Excision of this CTGexp repeat using CRISPR-Cas resulted in the disappearance of punctate ribonuclear foci in cardiomyocyte-like cells derived from DM1-induced pluripotent stem cells (iPSCs). This was associated with correction of the underlying spliceopathy as determined by RNA sequencing and alternate splicing analysis. Certain genes were of particular interest due to their role in cardiac development, maturation, and function (TPM4, CYP2J2, DMD, MBNL3, CACNA1H, ROCK2, ACTB) or their association with splicing (SMN2, GCFC2, MBNL3). Moreover, while comparing isogenic CRISPR-Cas9-corrected versus non-corrected DM1 cardiomyocytes, a prominent difference in the splicing pattern for a number of candidate genes was apparent pertaining to genes that are associated with cardiac function (TNNT, TNNT2, TTN, TPM1, SYNE1, CACNA1A, MTMR1, NEBL, TPM1), cellular signaling (NCOR2, CLIP1, LRRFIP2, CLASP1, CAMK2G), and other DM1-related genes (i.e., NUMA1, MBNL2, LDB3) in addition to the disease-causing DMPK gene itself. Subsequent validation using a selected gene subset, including MBNL1, MBNL2, INSR, ADD3, and CRTC2, further confirmed correction of the spliceopathy following CTGexp repeat excision. To our knowledge, the present study provides the first comprehensive unbiased transcriptome-wide analysis of the differential splicing landscape in DM1 patient-derived cardiac cells after excision of the CTGexp repeat using CRISPR-Cas9, showing reversal of the abnormal cardiac spliceopathy in DM1.


Asunto(s)
Células Madre Pluripotentes Inducidas , Distrofia Miotónica , Empalme Alternativo , Sistemas CRISPR-Cas , Proteínas de Unión a Calmodulina/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Distrofia Miotónica/genética , Distrofia Miotónica/terapia , Proteína Quinasa de Distrofia Miotónica/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transcriptoma , Expansión de Repetición de Trinucleótido/genética
4.
Nat Commun ; 12(1): 4291, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34257302

RESUMEN

In utero base editing has the potential to correct disease-causing mutations before the onset of pathology. Mucopolysaccharidosis type I (MPS-IH, Hurler syndrome) is a lysosomal storage disease (LSD) affecting multiple organs, often leading to early postnatal cardiopulmonary demise. We assessed in utero adeno-associated virus serotype 9 (AAV9) delivery of an adenine base editor (ABE) targeting the Idua G→A (W392X) mutation in the MPS-IH mouse, corresponding to the common IDUA G→A (W402X) mutation in MPS-IH patients. Here we show efficient long-term W392X correction in hepatocytes and cardiomyocytes and low-level editing in the brain. In utero editing was associated with improved survival and amelioration of metabolic, musculoskeletal, and cardiac disease. This proof-of-concept study demonstrates the possibility of efficiently performing therapeutic base editing in multiple organs before birth via a clinically relevant delivery mechanism, highlighting the potential of this approach for MPS-IH and other genetic diseases.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal/patología , Animales , Modelos Animales de Enfermedad , Hepatocitos/metabolismo , Humanos , Mutación/genética , Miocitos Cardíacos/metabolismo
5.
Sci Transl Med ; 11(488)2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30996081

RESUMEN

Monogenic lung diseases that are caused by mutations in surfactant genes of the pulmonary epithelium are marked by perinatal lethal respiratory failure or chronic diffuse parenchymal lung disease with few therapeutic options. Using a CRISPR fluorescent reporter system, we demonstrate that precisely timed in utero intra-amniotic delivery of CRISPR-Cas9 gene editing reagents during fetal development results in targeted and specific gene editing in fetal lungs. Pulmonary epithelial cells are predominantly targeted in this approach, with alveolar type 1, alveolar type 2, and airway secretory cells exhibiting high and persistent gene editing. We then used this in utero technique to evaluate a therapeutic approach to reduce the severity of the lethal interstitial lung disease observed in a mouse model of the human SFTPCI73T mutation. Embryonic expression of SftpcI73T alleles is characterized by severe diffuse parenchymal lung damage and rapid demise of mutant mice at birth. After in utero CRISPR-Cas9-mediated inactivation of the mutant SftpcI73T gene, fetuses and postnatal mice showed improved lung morphology and increased survival. These proof-of-concept studies demonstrate that in utero gene editing is a promising approach for treatment and rescue of monogenic lung diseases that are lethal at birth.


Asunto(s)
Sistemas CRISPR-Cas/genética , Enfermedades Pulmonares/genética , Animales , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Edición Génica/métodos , Humanos , Ratones , Mutación/genética , Proteína C Asociada a Surfactante Pulmonar/genética
6.
Nat Med ; 24(10): 1513-1518, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30297903

RESUMEN

In utero gene editing has the potential to prenatally treat genetic diseases that result in significant morbidity and mortality before or shortly after birth. We assessed the viral vector-mediated delivery of CRISPR-Cas9 or base editor 3 in utero, seeking therapeutic modification of Pcsk9 or Hpd in wild-type mice or the murine model of hereditary tyrosinemia type 1, respectively. We observed long-term postnatal persistence of edited cells in both models, with reduction of plasma PCSK9 and cholesterol levels following in utero Pcsk9 targeting and rescue of the lethal phenotype of hereditary tyrosinemia type 1 following in utero Hpd targeting. The results of this proof-of-concept work demonstrate the possibility of efficiently performing gene editing before birth, pointing to a potential new therapeutic approach for selected congenital genetic disorders.


Asunto(s)
Terapia Genética , Oxidorreductasas/genética , Proproteína Convertasa 9/genética , Tirosinemias/terapia , Animales , Sistemas CRISPR-Cas/genética , Modelos Animales de Enfermedad , Edición Génica , Vectores Genéticos/genética , Vectores Genéticos/uso terapéutico , Humanos , Oxidorreductasas/uso terapéutico , Proproteína Convertasa 9/uso terapéutico , Tirosinemias/genética , Tirosinemias/patología
7.
Nucleic Acids Res ; 46(16): 8275-8298, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-29947794

RESUMEN

CRISPR/Cas9 is an attractive platform to potentially correct dominant genetic diseases by gene editing with unprecedented precision. In the current proof-of-principle study, we explored the use of CRISPR/Cas9 for gene-editing in myotonic dystrophy type-1 (DM1), an autosomal-dominant muscle disorder, by excising the CTG-repeat expansion in the 3'-untranslated-region (UTR) of the human myotonic dystrophy protein kinase (DMPK) gene in DM1 patient-specific induced pluripotent stem cells (DM1-iPSC), DM1-iPSC-derived myogenic cells and DM1 patient-specific myoblasts. To eliminate the pathogenic gain-of-function mutant DMPK transcript, we designed a dual guide RNA based strategy that excises the CTG-repeat expansion with high efficiency, as confirmed by Southern blot and single molecule real-time (SMRT) sequencing. Correction efficiencies up to 90% could be attained in DM1-iPSC as confirmed at the clonal level, following ribonucleoprotein (RNP) transfection of CRISPR/Cas9 components without the need for selective enrichment. Expanded CTG repeat excision resulted in the disappearance of ribonuclear foci, a quintessential cellular phenotype of DM1, in the corrected DM1-iPSC, DM1-iPSC-derived myogenic cells and DM1 myoblasts. Consequently, the normal intracellular localization of the muscleblind-like splicing regulator 1 (MBNL1) was restored, resulting in the normalization of splicing pattern of SERCA1. This study validates the use of CRISPR/Cas9 for gene editing of repeat expansions.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Mioblastos/metabolismo , Distrofia Miotónica/genética , Expansión de Repetición de Trinucleótido/genética , Células Cultivadas , Niño , Femenino , Humanos , Persona de Mediana Edad , Desarrollo de Músculos/genética , Distrofia Miotónica/metabolismo , Distrofia Miotónica/patología
8.
Mol Ther ; 26(5): 1241-1254, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29599079

RESUMEN

In vivo tissue-specific genome editing at the desired loci is still a challenge. Here, we report that AAV9-delivery of truncated guide RNAs (gRNAs) and Cas9 under the control of a computationally designed hepatocyte-specific promoter lead to liver-specific and sequence-specific targeting in the mouse factor IX (F9) gene. The efficiency of in vivo targeting was assessed by T7E1 assays, site-specific Sanger sequencing, and deep sequencing of on-target and putative off-target sites. Though AAV9 transduction was apparent in multiple tissues and organs, Cas9 expression was restricted mainly to the liver, with only minimal or no expression in other non-hepatic tissues. Consequently, the insertions and deletion (indel) frequency was robust in the liver (up to 50%) in the desired target loci of the F9 gene, with no evidence of targeting in other organs or other putative off-target sites. This resulted in a substantial loss of FIX activity and the emergence of a bleeding phenotype, consistent with hemophilia B. The in vivo efficacy of the truncated gRNA was as high as that of full-length gRNA. Cas9 expression was transient in neonates, representing an attractive "hit-and-run" paradigm. Our findings have potentially broad implications for somatic gene targeting in the liver using the CRISPR/Cas9 platform.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Hígado/metabolismo , Animales , Secuencia de Bases , Sitios de Unión , Biología Computacional/métodos , Dependovirus/genética , Factor IX/genética , Marcación de Gen , Vectores Genéticos/genética , Hemofilia B/diagnóstico , Hemofilia B/genética , Hemofilia B/terapia , Humanos , Ratones , Especificidad de Órganos , Fenotipo , Unión Proteica , ARN Guía de Kinetoplastida
9.
Oncotarget ; 6(24): 20132-44, 2015 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25992771

RESUMEN

KRAS is a frequently mutated oncogene in lung cancer and among the most refractory to EGFR targeted therapy. Recently, preclinical evidence in pancreatic cancer has demonstrated that mutant KRAS can be regulated by EGFR. However, the distinct correlation between the EGFR/HER family members and mutant KRAS has not been investigated. Here, we show that non-small cell lung cancer cell lines harboring differing isoforms of mutant KRAS, can be broadly divided into EGFR/HER dependent and EGFR/HER independent groups. Combined therapeutic targeting of EGFR, HER2 and HER3 in isoforms regulated by extracellular growth signals promotes in vitro and in vivo efficacy. We also provide evidence that depletion of EGFR via RNA interference specifically abolishes the EGFR/KRAS interaction in the dependent subset. Taken together, these findings suggest that upstream inhibition of the EGFR/HER receptors may be effective in treating a subset of KRAS mutant lung cancers.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Receptores ErbB/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Anticuerpos Monoclonales Humanizados/administración & dosificación , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/efectos de los fármacos , Clorhidrato de Erlotinib/administración & dosificación , Femenino , Genes ras , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Terapia Molecular Dirigida , Mutación , Distribución Aleatoria , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
10.
J Asthma Allergy ; 6: 109-16, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23966795

RESUMEN

BACKGROUND: We previously showed that the long-acting beta agonist (LABA) salmeterol as inhalation powder or metered-dose inhaler improves lung-function parameters assessed by impulse oscillometry (IOS) in 2- to 5-year-old children with reversible-airway disease within 15 minutes. OBJECTIVE: We studied 12- to 45-year-olds with mild persistent asthma in order to compare the onset and extent of peripheral airway effects following the first dose and after 4 weeks dosing with two inhaled corticosteroid (ICS)/LABA combinations: fluticasone propionate/salmeterol 115/21 and budesonide/formoterol 160/4.5. METHODS: Thirty subjects with mild persistent asthma using only an as-needed short-acting beta-agonist (albuterol) who had at least a 40% change in integrated low-frequency reactance postalbuterol were selected and randomized to receive either fluticasone propionate/salmeterol or budesonide/formoterol (15 subjects each). We collected three to six IOS replicates at baseline, at 5, 20, 40, 60, 120, and 240 minutes postdose at randomization, and after 4 weeks of twice-daily dosing. Blinded investigators calculated IOS frequency-dependent resistance and reactance (R5-R20 and AX), indicative of small-airway dysfunction, and also estimated the peripheral airway resistance (Rp ) and peripheral airway compliance (Cp ), using a respiratory-impedance model. RESULTS: At randomization visits, onset of action was detected as early as 5 minutes (t-test, P < 0.05) after fluticasone propionate/salmeterol by Cp , and within 5 minutes after budesonide/formoterol by R5-R20, AX, Rp , and Cp . However, after 4 weeks of dosing, only Rp was significantly different (from 60 to 120 minutes) after fluticasone propionate/salmeterol, while R5-R20, AX, Rp , and Cp were not significantly different within 240 minutes after budesonide/formoterol. CONCLUSION: These two ICS/LABA combinations initially improved the peripheral airway function of 12- to 45-year-old asthmatics significantly in about 5 minutes or less, as measured by R5-R20, AX, Rp , and/or Cp . After regular dosing for 4 weeks, pre- to postdose differences in these parameters had diminished significantly due to improved predose status of peripheral airways. Single dosing with ICS/LABA combinations in mild persistent asthma improves small-airway function, and the effect is maintained over a 12-hour interval by regular use for 4 weeks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...