Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Inst Mech Eng H ; 237(10): 1228-1239, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37840254

RESUMEN

Skin cancer is a chronic illness seen visually and further diagnosed with a dermoscopic examination. It is crucial to precisely localize and classify lesions from dermoscopic images to diagnose and treat skin cancers as soon as possible. This work presents melanoma identification, and the classification method significantly improves accuracy and precision. This work proposes a method Hybrid of Genetic and Particle swarm optimization (HG-PSO), and You only look once version 7 (YOLOv7) based convolutional network for skin cancer classification. The infected region is first located using optimized YOLOv7 object detection. Then color thresholding is applied to segment it, which is passed to the proposed convolutional network for classification. This work is tested on the Human Against Machine with 10,000 training images (HAM10000), International Skin Imaging Collaboration (ISIC)-2019, and Hospital Pedro Hispano (PH2) datasets, and the findings are compared to the state-of-the-art methods for classifying skin cancer. The proposed method achieves 98.86% accuracy, 99.00% average precision, 98.85% average recall, and 98.85% average F1-score on the HAM10000 dataset. It achieves 97.10% accuracy on ISIC-2019 datasets. The average precision obtained is 97.37%, the average recall is 97.13%, and the average F1-score is 97.13% on the ISIC-2019 dataset. It achieves a 97.7% accuracy on the PH2 dataset. The average precision obtained is 99.00%, the average recall is 96.00%, and the average F1-score is 97.00% on the PH2 dataset. The test time taken by this method on datasets HAM10000, ISIC-2019, and PH2 dataset is 2, 3, and 2 s, respectively, which may help give faster responses in telemedicine.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Dermoscopía/métodos , Neoplasias Cutáneas/diagnóstico por imagen , Neoplasias Cutáneas/patología , Melanoma/diagnóstico por imagen , Melanoma/patología , Piel/diagnóstico por imagen
2.
Proc Inst Mech Eng H ; 237(8): 946-957, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37366554

RESUMEN

Lung cancer is the uncontrolled growth of cells that originates in the lung parenchyma or cells that line the air passages. These cells divide rapidly to form malicious tumors. This paper proposes a multi-task ensemble of three dimensional (3D) deep neural network (DNN) based model, namely: pre-trained EfficientNetB0, BiGRU-based SEResNext101, and the proposed LungNet. The ensemble model performs binary classification and regression tasks to accurately classify the benign and malignant pulmonary nodules. This study also explores the attribute importance and proposes a domain knowledge-based regularization technique. The proposed model is evaluated on the public benchmark LIDC-IDRI dataset. Through a comparative study, it was shown that when coefficients generated by the random forest (RF) are used in the loss function, the proposed ensemble model offers a better prediction capability of the accuracy of 96.4% compared to the state-of-the-art methods. In addition, the receiver operating characteristic curves show that the proposed ensemble model has better performance than the base learners. Thus, the proposed CAD-based model can efficiently detect malignant pulmonary nodules.


Asunto(s)
Neoplasias Pulmonares , Nódulo Pulmonar Solitario , Humanos , Nódulo Pulmonar Solitario/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Redes Neurales de la Computación , Neoplasias Pulmonares/diagnóstico por imagen , Pulmón , Interpretación de Imagen Radiográfica Asistida por Computador/métodos
3.
Biomed Eng Lett ; 10(2): 227-239, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32477610

RESUMEN

This paper proposes a deep neural network (DNN) model using the reduced input feature space of Parkinson's telemonitoring dataset to predict Parkinson's disease (PD) progression. PD is a chronic and progressive nervous system disorder that affects body movement. PD is assessed by using the unified Parkinson's disease rating scale (UPDRS). In this paper, firstly, principal component analysis (PCA) is employed to the featured dataset to address the multicollinearity problems in the dataset and to reduce the dimension of input feature space. Then, the reduced input feature space is fed into the proposed DNN model with a tuned parameter norm penalty (L2) and analyses the prediction performance of it in PD progression by predicting Motor and Total-UPDRS score. The model's performance is evaluated by conducting several experiments and the result is compared with the result of previously developed methods on the same dataset. The model's prediction accuracy is measured by fitness parameters, mean absolute error (MAE), root mean squared error (RMSE), and coefficient of determination (R2). The MAE, RMSE, and R2 values are 0.926, 1.422, and 0.970 respectively for motor-UPDRS. These values are 1.334, 2.221, and 0.956 respectively for Total-UPDRS. Both the Motor and Total-UPDRS score is better predicted by the proposed method. This paper shows the usefulness and efficacy of the proposed method for predicting the UPDRS score in PD progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...