Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
J Pharm Pharmacol ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656627

RESUMEN

OBJECTIVE: The objective of the present study was to enhance the bioavailability of cannabidiol (CBD) using 3D Digital Light Processing (DLP)-printed microneedle (MN) transdermal drug delivery system. METHODS: CBD MN patch was fabricated and optimized using 3D DLP printing using CBD (8% w/v), Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) (0.49% w/v), distilled water (20% w/v), and poly (ethylene glycol) dimethacrylate 550 (PEGDAMA 550) (up to 100% w/v). CBD MNs were characterized for their morphology, mechanical strength, in vitro release study, ex vivo permeation study, and in vivo pharmacokinetic (PK) profile. KEY FINDINGS: Microscopic images showed that sharp CBD MNs with a height of ~800 µm, base diameter of ~250 µm, and tip with a radius of curvature (RoC) of ~15 µm were successfully printed using optimized printing parameters. Mechanical strength studies showed no significant deformation in the morphology of CBD MNs even after applying 0.5N/needle force. Ex vivo permeation study showed significant (P < .0001) permeation of CBD in the receiving media as compared to CBD patch (control). In vivo PK study showed significantly (P < .05) enhanced bioavailability in the case of CBD MN patch as compared to CBD subcutaneous inj. (control). CONCLUSION: Overall, systemic absorption of CBD was significantly enhanced using 3D-printed MN drug delivery system.

2.
Biomedicines ; 12(3)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38540102

RESUMEN

The peripheral nervous system undergoes sufficient stress when affected by diabetic conditions, chemotherapeutic drugs, and personal injury. Consequently, peripheral neuropathy arises as the most common complication, leading to debilitating symptoms that significantly alter the quality and way of life. The resulting chronic pain requires a treatment approach that does not simply mask the accompanying symptoms but provides the necessary external environment and neurotrophic factors that will effectively facilitate nerve regeneration. Under normal conditions, the peripheral nervous system self-regenerates very slowly. The rate of progression is further hindered by the development of fibrosis and scar tissue formation, which does not allow sufficient neurite outgrowth to the target site. By incorporating scaffolding supplemented with secretome derived from human mesenchymal stem cells, it is hypothesized that neurotrophic factors and cellular signaling can facilitate the optimal microenvironment for nerve reinnervation. However, conventional methods of secretory vesicle production are low yield, thus requiring improved methods to enhance paracrine secretions. This report highlights the state-of-the-art methods of neuropathy treatment as well as methods to optimize the clinical application of stem cells and derived secretory vesicles for nerve regeneration.

3.
Sci Rep ; 14(1): 2641, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302531

RESUMEN

A transparent polarisation-sensitive phase pattern changes the phase of transmitted light without absorption, whereas this change of phase depends on the polarisation of incident light. A position-localised polarisation-dependent phase pattern is imprinted onto the phase-space of atoms by using atomic state dependent velocity-selective hole burning. A phase-space localised pattern is a higher dimensional generalisation of patterns localised in the position-space. Such a pattern cannot be imaged with a lens. The imprinted pattern is localised in a unique three-dimensional subspace of the six-dimensional phase-space of atoms. The phase-space localised pattern transforms the polarisation of light transmitting through it. This pattern is tomographically imaged at room temperature by measuring the intensity of the transmitted imaging laser beam of variable frequency with a camera after its polarisation analysis. Two sub-tomographs of the imprinted phase-space localised pattern are constructed. This paper presents a concept and experiment of imprinting and imaging of a polarisation-sensitive phase pattern localised in the phase-space.

4.
Pharmaceutics ; 16(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38258094

RESUMEN

In this study, we evaluated IL-15 stimulated natural killer cell-derived EVs (NK-EVs) as therapeutic agents in vitro and in vivo in Osimertinib-resistant lung cancer (H1975R) with EGFR mutations (L858R) in combination with carboplatin (CBP). NK-EVs were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis, and atomic force microscopy imaging revealed vesicles with a spherical form and sizes meeting the criteria of exosomal EVs. Further, Western blot studies demonstrated the presence of regular EV markers along with specific NK markers (perforin and granzyme). EVs were also characterized by proteomic analysis, which demonstrated that EVs had proteins for natural killer cell-mediated cytotoxicity (Granzyme B) and T cell activation (perforin and plastin-2). Gene oncology analysis showed that these differentially expressed proteins are involved in programmed cell death and positive regulation of cell death. Further, isolated NK-EVs were cytotoxic to H1975R cells in vitro in 2D and 3D cell cultures. CBP's IC50 was reduced by approximately in 2D and 3D cell cultures when combined with NK-EVs. The EVs were then combined with CBP and administered by i.p. route to H1975R tumor xenografts, and a significant reduction in tumor volume in vivo was observed. Our findings show for the first time that NK-EVs target the PD-L1/PD-1 immunological checkpoint to induce apoptosis and anti-inflammatory response by downregulation of SOD2, PARP, BCL2, SET, NF-κB, and TGF-ß. The ability to isolate functional NK-EVs on a large scale and use them with platinum-based drugs may lead to new clinical applications. The results of the present study suggest the possibility of the combination of NK-cell-derived EVs and CBP as a viable immunochemotherapeutic strategy for resistant cancers.

6.
Cancer Lett ; 566: 216243, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37257632

RESUMEN

Exosomes are extracellular vesicles (EVs) originating from endosomes that play a role in cellular communication. These vesicles which mimic the parental cells that release them are promising candidates for targeted drug delivery and therapeutic applications against cancer because of their favorable biocompatibility, specific targeting, low toxicity, and immunogenicity. Currently, Delta-9-tetrahydrocannabinol (THC), cannabidiol (CBD) and other cannabinoids (e.g., CBG, THCV, CBC), are being explored for their anticancer and anti-proliferative properties. Several mechanisms, including cell cycle arrest, proliferation inhibition, activation of autophagy and apoptosis, inhibition of adhesion, metastasis, and angiogenesis have been proposed for their anticancer activity. EVs could be engineered as cannabinoid delivery systems for tumor-specificity leading to superior anticancer effects. This review discusses current techniques for EV isolation from various sources, characterization and strategies to load them with cannabinoids. More extensively, we culminate information available on different sources of EVs that have anticancer activity, mechanism of action of cannabinoids against various wild type and resistant tumors and role of CBD in histone modifications and cancer epigenetics. We have also enumerated the role of EVs containing cannabinoids against various tumors and in chemotherapy induced neuropathic pain.


Asunto(s)
Cannabidiol , Cannabinoides , Neoplasias , Humanos , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Cannabinoides/metabolismo , Dronabinol/farmacología , Dronabinol/uso terapéutico , Neoplasias/tratamiento farmacológico , Cannabidiol/farmacología , Cannabidiol/uso terapéutico
7.
Int J Mol Sci ; 24(8)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37108817

RESUMEN

The choroid plexus (ChP) is a complex structure in the human brain that is responsible for the secretion of cerebrospinal fluid (CSF) and forming the blood-CSF barrier (B-CSF-B). Human-induced pluripotent stem cells (hiPSCs) have shown promising results in the formation of brain organoids in vitro; however, very few studies to date have generated ChP organoids. In particular, no study has assessed the inflammatory response and the extracellular vesicle (EV) biogenesis of hiPSC-derived ChP organoids. In this study, the impacts of Wnt signaling on the inflammatory response and EV biogenesis of ChP organoids derived from hiPSCs was investigated. During days 10-15, bone morphogenetic protein 4 was added along with (+/-) CHIR99021 (CHIR, a small molecule GSK-3ß inhibitor that acts as a Wnt agonist). At day 30, the ChP organoids were characterized by immunocytochemistry and flow cytometry for TTR (~72%) and CLIC6 (~20%) expression. Compared to the -CHIR group, the +CHIR group showed an upregulation of 6 out of 10 tested ChP genes, including CLIC6 (2-fold), PLEC (4-fold), PLTP (2-4-fold), DCN (~7-fold), DLK1 (2-4-fold), and AQP1 (1.4-fold), and a downregulation of TTR (0.1-fold), IGFBP7 (0.8-fold), MSX1 (0.4-fold), and LUM (0.2-0.4-fold). When exposed to amyloid beta 42 oligomers, the +CHIR group had a more sensitive response as evidenced by the upregulation of inflammation-related genes such as TNFα, IL-6, and MMP2/9 when compared to the -CHIR group. Developmentally, the EV biogenesis markers of ChP organoids showed an increase over time from day 19 to day 38. This study is significant in that it provides a model of the human B-CSF-B and ChP tissue for the purpose of drug screening and designing drug delivery systems to treat neurological disorders such as Alzheimer's disease and ischemic stroke.


Asunto(s)
Exosomas , Células Madre Pluripotentes , Humanos , Péptidos beta-Amiloides , Plexo Coroideo/fisiología , Glucógeno Sintasa Quinasa 3 beta , Organoides
8.
Bioact Mater ; 25: 732-747, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37056276

RESUMEN

Human mesenchymal stromal cells (hMSCs) are mechanically sensitive undergoing phenotypic alterations when subjected to shear stress, cell aggregation, and substrate changes encountered in 3D dynamic bioreactor cultures. However, little is known about how bioreactor microenvironment affects the secretion and cargo profiles of hMSC-derived extracellular vesicles (EVs) including the subset, "exosomes", which contain therapeutic proteins, nucleic acids, and lipids from the parent cells. In this study, bone marrow-derived hMSCs were expanded on 3D Synthemax II microcarriers in the PBS mini 0.1L Vertical-Wheel bioreactor system under variable shear stress levels at 25, 40, and 64 RPM (0.1-0.3 dyn/cm2). The bioreactor system promotes EV secretion from hMSCs by 2.5-fold and upregulates the expression of EV biogenesis markers and glycolysis genes compared to the static 2D culture. The microRNA cargo was also altered in the EVs from bioreactor culture including the upregulation of miR-10, 19a, 19b, 21, 132, and 377. EV protein cargo was characterized by proteomics analysis, showing upregulation of metabolic, autophagy and ROS-related proteins comparing with 2D cultured EVs. In addition, the scalability of the Vertical-Wheel bioreactor system was demonstrated in a 0.5L bioreactor, showing similar or better hMSC-EV secretion and cargo content compared to the 0.1L bioreactor. This study advances our understanding of bio-manufacturing of stem cell-derived EVs for applications in cell-free therapy towards treating neurological disorders such as ischemic stroke, Alzheimer's disease, and multiple sclerosis.

9.
AAPS PharmSciTech ; 24(4): 88, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977867

RESUMEN

The objective of the present study was to develop digital light processing (DLP) 3D printed sustained release ibuprofen (IBU) tablets using 3D DLP printers for evaluation in in vitro release and in vivo pharmacokinetic studies with their in vitro-in vivo correlation. The resin formulation and printing parameters were optimized using quality by design (QbD) approach, and IBU tablets were printed using DLP printers which works at 385 and 405 nm wavelengths. Our results demonstrated that formulation consisting of polyethylene glycol diacrylate (PEGDA) 700, water, IBU, and riboflavin printed at 40-s bottom layer exposure time and 30-s exposure time produced tablets using both 385 and 405 nm wavelengths. In vitro dissolution studies showed > 70% drug release at the end of 24 h when printed at 405 nm wavelength with no significant difference between tablets printed at 385 nm. In vivo pharmacokinetic evaluation of the optimized 3D printed tablets printed at 405 nm at oral dose of 30 mg/kg in rats showed sustained release of IBU with significantly (p < 0.05) higher Cmax of 30.12 ± 2.45 µg/mL and AUC(0-24 h) of 318.97 ± 16.98 (µg/mL × h) compared to marketed IBU tablet (control). In vivo-in vitro correlation studies showed 80% of drug was absorbed in vivo within 3 h from the pulverized 3D printed tablet, whereas intact 3D tablet showed sustained release of IBU with > 75% IBU release in 24 h in vitro. Overall, IBU tablets fabricated using DLP printing demonstrated sustained release and enhanced systemic absorption with no significant difference in their release profile at different wavelengths.


Asunto(s)
Ibuprofeno , Proyectos de Investigación , Animales , Ratas , Preparaciones de Acción Retardada , Liberación de Fármacos , Comprimidos , Impresión Tridimensional , Tecnología Farmacéutica/métodos
10.
Pharmaceutics ; 15(2)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36839877

RESUMEN

In cancer patients, chronic paclitaxel (PTX) treatment causes excruciating pain, limiting its use in cancer chemotherapy. The neuroprotective potential of synthetic cannabidiol (CBD) and CBD formulated in extracellular vesicles (CBD-EVs) isolated from human umbilical cord derived mesenchymal stem cells was investigated in C57BL/6J mice with PTX-induced neuropathic pain (PIPN). The particle size of EVs and CBD-EVs, surface roughness, nanomechanical properties, stability, and release studies were all investigated. To develop neuropathy in mice, PTX (8 mg/kg, i.p.) was administered every other day (four doses). In terms of decreasing mechanical and thermal hypersensitivity, CBD-EVs treatment was superior to EVs treatment or CBD treatment alone (p < 0.001). CBD and CBD-EVs significantly reduced mitochondrial dysfunction in dorsal root ganglions and spinal homogenates of PTX-treated animals by modulating the AMPK pathway (p < 0.001). Studies inhibiting the AMPK and 5HT1A receptors found that CBD did not influence the neurobehavioral or mitochondrial function of PIPN. Based on these results, we hypothesize that CBD and CBD-EVs mitigated PIPN by modulating AMPK and mitochondrial function.

11.
Int J Pharm ; 636: 122647, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36754185

RESUMEN

The objective of the present study was to fabricate microneedles for delivering lipophilic active ingredients (APIs) using digital light processing (DLP) printing technology and quality by design (QbD) supplemented by artificial intelligence (AI) algorithms. In the present study, dissolvable microneedle (MN) patches using ibuprofen (IBU) as a model drug were successfully fabricated with DLP printing technology at âˆ¼ 750 µm height, ∼250 µm base diameter, and tip with radius of curvature (RoC) of âˆ¼ 15 µm. MN patches were comprised of IBU, photoinitiator, Lithium phenyl (2,4,6-trimethylbenzoyl) phosphinate (LAP), polyethylene glycol dimethacrylate (PEGDAMA)550 and distilled water and were developed using the QbD optimization approach. Optimization of print fidelity and needle morphology were achieved using AI implementing a semi-supervised machine learning approach. Mechanical strength tests demonstrated that IBU MNs formed pores both on Parafilm M® and human cadaver skin. IBU-MNs consisting of 0.23 %w/v and 0.49 %w/v LAP with 10 %w/v water showed âˆ¼ 2 mg/cm2 sustained drug permeation at 72 h in skin permeation experiments with flux of âˆ¼ 40 µg/cm2/h. Pharmacokinetic studies in rats displayed biphasic rapid first-order absorption with sustained zero-order input of Ko = 150ug/hr, AUC0-48h = 62812.02 ± 11128.39 ng/ml*h, Tmax = 2.66 ± 1.12 h, and Cmax = 3717.43 ± 782.25 ng/ml (using 0.23 %w/v LAP IBU MN patch). An in vitro in vivo relation (IVIVR) was conducted identifying a polynomial relationship between patch release and fraction absorbed in vivo. This study demonstrates fabrication of dissolvable DLP-printed microneedle patches for lipophilic API delivery with biphasic rapid first-order and sustained zero-order release.


Asunto(s)
Inteligencia Artificial , Piel , Humanos , Ratas , Animales , Administración Cutánea , Preparaciones Farmacéuticas , Sistemas de Liberación de Medicamentos , Ibuprofeno , Impresión Tridimensional , Agujas , Parche Transdérmico
12.
Biochimie ; 208: 19-30, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36535544

RESUMEN

The significant resistance to currently available chemotherapeutics makes treatment for TNBC a key clinical concern. Herein, we studied the anti-cancer potentials of synthetic cannabidiol (CBD) and Tetrahydrocannabivarin (THCV) when used alone or in combination with doxorubicin (DOX) against MDA-MB-231 resistant cells. Pre-treatment with CBD and THCV significantly increased the cytotoxicity of DOX in MDA-MB-231 2D and 3D cultures that were DOX-resistant. Transcriptomics and Proteomics studies revealed that CBD and THCV, by downregulating PD-L1, TGF-ß, sp1, NLRP3, P38-MAPK, and upregulating AMPK induced apoptosis leading to improved DOX's chemosensitivity against DOX resistant MDA-MB-231 tumors in BALB/c nude mice. CBD/THCV in combination with DOX significantly inhibited H3k4 methylation and H2K5 acetylation as demonstrated by western blotting and RT-PCR. Based on these findings, CBD and THCV appear to counteract histone modifications and their subsequent effects on DOX, resulting in chemo-sensitization against MDA-MB-231 resistant cancers.


Asunto(s)
Cannabidiol , Cannabinoides , Ratones , Animales , Humanos , Cannabidiol/farmacología , Ratones Desnudos , Xenoinjertos , Doxorrubicina/farmacología
13.
Pharm Res ; 40(4): 801-816, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36002615

RESUMEN

PURPOSE: There is a growing interest in extracellular vesicles (EVs) for ocular applications as therapeutics, biomarkers, and drug delivery vehicles. EVs secreted from mesenchymal stem cells (MSCs) have shown to provide therapeutic benefits in ocular conditions. However, very little is known about the properties of bioreactor cultured-3D human retinal organoids secreted EVs. This study provides a comprehensive morphological, nanomechanical, molecular, and proteomic characterization of retinal organoid EVs and compares it with human umbilical cord (hUC) MSCs. METHODS: The morphology and nanomechanical properties of retinal organoid EVs were assessed using Nanoparticle tracking analysis (NTA) and Atomic force microscopy (AFM). Gene expression analysis of exosome biogenesis of early and late retinal organoids were compared using qPCR. The protein profile of the EVs were analyzed with proteomic tools. RESULTS: NTA indicated the average size of EV as 100-250 nm. A high expression of exosome biogenesis genes was observed in late retinal organoids EVs. Immunoblot analysis showed highly expressed exosomal markers in late retinal organoids EVs compared to early retinal organoids EVs. Protein profiling of retinal organoid EVs displayed a higher differential expression of retinal function-related proteins and EV biogenesis proteins than hUCMSC EVs, implicating that the use of retinal organoid EVs may have a superior therapeutic effect on retinal disorders. CONCLUSION: This study provides supplementary knowledge on the properties of retinal organoid EVs and suggests their potential use in the diagnostic and therapeutic treatments for ocular diseases.


Asunto(s)
Exosomas , Vesículas Extracelulares , Humanos , Proteómica , Vesículas Extracelulares/metabolismo , Retina , Organoides/metabolismo
14.
Sci Rep ; 12(1): 21105, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36473960

RESUMEN

A transparent polarisation sensitive phase pattern exhibits a position and polarisation dependent phase shift of transmitted light and it represents a unitary transformation. A quantum ghost image of this pattern is produced with hyper-entangled photons consisting of Einstein-Podolsky-Rosen (EPR) and polarisation entanglement. In quantum ghost imaging, a single photon interacts with the pattern and is detected by a stationary detector and a non-interacting photon is imaged on a coincidence camera. EPR entanglement manifests spatial correlations between an object plane and a ghost image plane, whereas a polarisation dependent phase shift exhibited by the pattern is detected with polarisation entanglement. In this quantum ghost imaging, the which-position-polarisation information of a photon interacting with the pattern is not present in the experiment. A quantum ghost image is constructed by measuring correlations of the polarisation-momentum of an interacting photon with polarisation-position of a non-interacting photon. The experiment is performed with a coincidence single photon detection camera, where a non-interacting photon travels a long optical path length of 17.83 m from source to camera and a pattern is positioned at an optical distance of 19.16 m from the camera.

15.
Cells ; 11(21)2022 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-36359825

RESUMEN

Retinal organoids are three-dimensional (3D) structures derived from human pluripotent stem cells (hPSCs) that mimic the retina's spatial and temporal differentiation, making them useful as in vitro retinal development models. Retinal organoids can be assembled with brain organoids, the 3D self-assembled aggregates derived from hPSCs containing different cell types and cytoarchitectures that resemble the human embryonic brain. Recent studies have shown the development of optic cups in brain organoids. The cellular components of a developing optic vesicle-containing organoids include primitive corneal epithelial and lens-like cells, retinal pigment epithelia, retinal progenitor cells, axon-like projections, and electrically active neuronal networks. The importance of retinal organoids in ocular diseases such as age-related macular degeneration, Stargardt disease, retinitis pigmentosa, and diabetic retinopathy are described in this review. This review highlights current developments in retinal organoid techniques, and their applications in ocular conditions such as disease modeling, gene therapy, drug screening and development. In addition, recent advancements in utilizing extracellular vesicles secreted by retinal organoids for ocular disease treatments are summarized.


Asunto(s)
Organoides , Células Madre Pluripotentes , Humanos , Organoides/metabolismo , Células Madre Pluripotentes/metabolismo , Retina , Encéfalo , Bioingeniería
16.
AAPS PharmSciTech ; 23(7): 257, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114430

RESUMEN

Hot melt extrusion (HME) has been used for the formulation of topical solid lipid nanoparticle (SLN) gel without using any other size reduction technique including high pressure homogenization or sonication. SLN formulation solely using HME has not been applied to other drugs except IBU. Therefore, the purpose of the present study was to formulate FLB SLN solely using HME technique and evaluate the SLN formulation in inflammation animal model. Stable 0.5% w/v FLB SLN gel with particle size < 250 nm, PI < 0.3 and EE of > 98% was prepared. Differential scanning calorimetry (DSC) thermogram showed that the drug was converted to amorphous form in the HME process. Additionally, rheological studies demonstrated that FLB SLN gel and marketed FLB gel showed shear thinning property. FLB SLN formulation showed significantly (p < 0.05) higher peak force required to spread the formulation as compared to marketed FLB formulation. Stability studies showed that FLB SLN gel was stable for a month at room temperature and 2-4°C. Moreover, in vitro permeation test (IVPT) and ex vivo skin deposition study results revealed that FLB SLN gel showed significant (p < 0.05) increase in drug deposition in dermal layer and drug permeation as compared to control marketed formulation. Further, in vivo anti-inflammatory study showed equivalent inhibition of rat paw edema using 0.5% w/v FLB SLN gel which has 10 times less strength compared to control formulation. Overall, FLB SLN formulation was successfully manufactured solely using HME technique which resulted in enhanced the skin permeation of FLB and superior anti-inflammatory activity.


Asunto(s)
Flurbiprofeno , Tecnología de Extrusión de Fusión en Caliente , Animales , Antiinflamatorios , Portadores de Fármacos/química , Geles , Liposomas , Nanopartículas , Ratas
17.
Int J Pharm ; 624: 122016, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35863593

RESUMEN

The objective of the present study was to enhance the transdermal permeation of cannabinoids: cannabidiol (CBD), cannabigerol (CBG) and tetrahydrocannabivarin (THCV) using chemical permeation enhancer approach and evaluate them for their anti-inflammatory effect in vivo in a paw edema model in rats. Cannabinoids gel formulations were developed using FDA approved inactive ingredients: lactic acid (LA), polyethylene glycol-400 (PEG-400), N-methyl-2 pyrrolidone (NMP), dimethyl sulfoxide (DMSO). In vitro skin permeation testing (IVPT) showed flux of âˆ¼ 13.25 µg/cm2/h for CBD, ∼9.38 µg/cm2/h for CBG and âˆ¼ 51.74 µg/cm2/h for THCV. Additionally, IVPT study showed cumulative drug permeation of 610.96 ± 88.92 µg/cm2, 432.09 ± 35.59 µg/cm2 and 2384.44 ± 42.22 µg/cm2 from CBD, CBG and THCV gel formulations respectively. Further, effect of excipients on cannabinoid permeation showed that, formulation containing lactic acid, NMP and DMSO showed significantly (p < 0.0001) enhanced flux of cannabinoids as compared to formulation without LA, NMP and DMSO. In vivo studies showed that paw edema was significantly (p < 0.0001) reduced in the groups containing CBD, CBG, THCV as compared to control and placebo formulation. In conclusion, flux of CBD, CBG and THCV was significantly enhanced using chemical permeation enhancers approach which helped in reducing rat paw edema.


Asunto(s)
Cannabidiol , Cannabinoides , Animales , Ratas , Dimetilsulfóxido , Edema/inducido químicamente , Edema/tratamiento farmacológico , Excipientes , Ácido Láctico
18.
Pharmaceutics ; 14(6)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35745729

RESUMEN

The epidermal growth factor receptor (EGFR) is highly expressed in many non-small cell lung cancers (NSCLC), necessitating the use of EGFR-tyrosine kinase inhibitors (TKIs) as first-line treatments. Osimertinib (OSM), a third-generation TKI, is routinely used in clinics, but T790M mutations in exon 20 of the EGFR receptor lead to resistance against OSM, necessitating the development of more effective therapeutics. Telmisartan (TLM), OSM, and cell cycle and apoptosis regulatory protein 1 (CARP-1) functional mimetic treatments (CFM4.17) were evaluated in this study against experimental H1975 tumor xenografts to ascertain their anti-cancer effects. Briefly, tumor growth was studied in H1975 xenografts in athymic nude mice, gene and protein expressions were analyzed using next-generation RNA sequencing, proteomics, RT-PCR, and Western blotting. TLM pre-treatment significantly reduced the tumor burden when combined with CFM-4.17 nanoformulation and OSM combination (TLM_CFM-F_OSM) than their respective single treatments or combination of OSM and TLM with CFM 4.17. Data from RNA sequencing and proteomics revealed that TLM_CFM-F_OSM decreased the expression of Lamin B2, STAT3, SOD, NFKB, MMP-1, TGF beta, Sox-2, and PD-L1 proteins while increasing the expression of AMPK proteins, which was also confirmed by RT-PCR, proteomics, and Western blotting. According to our findings, the TLM_CFM-F_OSM combination has a superior anti-cancer effect in the treatment of NSCLC by affecting multiple resistant markers that regulate mitochondrial homeostasis, inflammation, oxidative stress, and apoptosis.

19.
Int Immunopharmacol ; 107: 108693, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35303507

RESUMEN

The purpose of this study was to evaluate if phytocannabinoids, synthetic cannabidiol (CBD), and tetrahydrocannabivarin (THCV), and their combination, could protect mice from Paclitaxel-induced peripheral neuropathy (PIPN). Six groups of C57BL/6J mice (n = 6) were used in this study. The mice were given paclitaxel (PTX) (8 mg/kg/day, i.p.) on days 1, 3, 5, and 7 to induce neuropathy. Mice were evaluated for behavioral parameters, and dorsal root ganglions (DRG) were collected from the animals and subjected to RNA sequencing and westernblot analysis at the end of the study. On cultured DRGs derived from adult male rats, immunocytochemistry and mitochondrial functional assays were also performed. When compared to individual treatments, the combination of CBD and THCV improved thermal and mechanical neurobehavioral symptoms in mice by twofold. Targets for CBD and THCV therapy were identified by KEGG (RNA sequencing). PTX reduced the expression of p-AMPK, SIRT1, NRF2, HO1, SOD2, and catalase while increasing the expression of PI3K, p-AKT, p-P38 MAP kinase, BAX, TGF-ß, NLRP3 inflammasome, and caspase 3 in DRG homogenates of mice. Combination therapy outperformed monotherapy in reversing these protein expressions. The addition of CBD and THCV to DRG primary cultures reduced mitochondrial superoxides while increasing mitochondrial membrane potentials. WAY100135 and rimonabant altered the neuroprotective effects of CBD and THCV respectively by blocking 5-HT1A and CB1 receptors in mice and DRG primary cultures. The entourage effect of CBD and THCV against PIPN appears to protect neurons in mice via 5HT1A and CB1 receptors respectively.


Asunto(s)
Cannabidiol , Cannabinoides , Neuralgia , Animales , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Cannabinoides/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Paclitaxel/efectos adversos , Ratas , Roedores
20.
Drug Deliv Transl Res ; 12(11): 2762-2777, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35217991

RESUMEN

To date, promising therapy for triple negative breast cancer (TNBC) remains a serious concern clinically because of poor prognosis, resistance, and recurrence. Herein, anti-cancer potential of synthetic cannabidiol (CBD; Purisys, GA; GMP grade) was explored either alone or as a chemosensitizer followed by post-treatment with doxorubicin (DOX) in TNBC (i.e., MDA-MB-231 and MDA-MB-468) cells. In comparison to 2D cultures, CBD showed greater IC50 values in 3D (LDP2 hydrogel based) cultures of MDA-MB-231 (6.26-fold higher) and MDA-MB-468 (10.22-fold higher) cells. Next-generation RNA sequencing revealed GADD45A, GADD45G, FASN, LOX, and integrin (i.e., -α5, -ß5) genes to be novelly altered by CBD in MDA-MB-231 cells. CIM-16 plate-based migration assay and western blotting disclosed that CBD induces anti-migratory effects in TNBC cells by decreasing fibronectin, vimentin, and integrins-α5, -ß5, and -ß1. Western blotting, RT-qPCR, and immunocytochemistry revealed that CBD inhibited autophagy (decreased Beclin1, and ATG-5, -7, and -16) of TNBC cells. CBD pre-treatment increased DOX sensitivity in TNBC cells. CBD pre-treatment accompanied by DOX treatment decreased LOX and integrin-α5, and increased caspase 9 protein respectively in MDA-MB-468 cells.


Asunto(s)
Cannabidiol , Neoplasias de la Mama Triple Negativas , Apoptosis , Autofagia , Beclina-1/metabolismo , Beclina-1/farmacología , Cannabidiol/farmacología , Caspasa 9/metabolismo , Caspasa 9/farmacología , Línea Celular Tumoral , Proliferación Celular , Doxorrubicina/farmacología , Fibronectinas , Humanos , Hidrogeles , Integrina alfa5/metabolismo , Integrina alfa5/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Vimentina/metabolismo , Vimentina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...