Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 97(11): e0092223, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37861334

RESUMEN

IMPORTANCE: The Omicron subvariants have substantially evaded host-neutralizing antibodies and adopted an endosomal route of entry. The virus has acquired several mutations in the receptor binding domain and N-terminal domain of S1 subunit, but remarkably, also incorporated mutations in S2 which are fixed in Omicron sub-lineage. Here, we found that the mutations in the S2 subunit affect the structural and biological properties such as neutralization escape, entry route, fusogenicity, and protease requirement. In vivo, these mutations may have significant roles in tropism and replication. A detailed understanding of the effects of S2 mutations on Spike function, immune evasion, and viral entry would inform the vaccine design, as well as therapeutic interventions aiming to block the essential proteases for virus entry. Thus, our study has identified the crucial role of S2 mutations in stabilizing the Omicron spike and modulating neutralization resistance to antibodies targeting the S1 subunit.


Asunto(s)
COVID-19 , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Endopeptidasas , Conformación Molecular , Mutación , Péptido Hidrolasas , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
2.
Infect Drug Resist ; 15: 1717-1732, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35422638

RESUMEN

Introduction: The mechanistic details of first line drug (FLD) resistance have been thoroughly explored but the genetic resistance mechanisms of second line injectables, which form the backbone of the combinatorial drug resistant tuberculosis therapy, are partially identified. This study aims to highlight the genetic and spoligotypic differences in the second line drug (SLD) resistant and sensitive Mycobacterium tuberculosis (Mtb) clinical isolates from Mumbai (Western India) and Lucknow (Northern India). Methods: The rrs, eis, whiB7, tlyA, gyrA and gyrB target loci were screened in 126 isolates and spoligotyped. Results: The novel mutations were observed in whiB7 loci (A43T, C44A, C47A, G48T, G59A and T152G in 5'-UTR; A42C, C253T and T270G in gene), tlyA (+CG200, G165A, C415G, and +G543) and gyrB (+G1359 and +A1429). Altogether, the rrs, eis, and whiB7 loci harbored mutations in ~86% and ~47% kanamycin resistant isolates from Mumbai and Lucknow, respectively. Mumbai strains displayed higher prevalence of mutations in gyrA (~85%) and gyrB loci (~13%) as compared to those from Lucknow (~69% and ~3.0%, respectively). Further, spoligotyping revealed that Beijing lineage is distributed equally amongst the drug resistant strains of Mumbai and Lucknow, but EAI-5 is existed at a higher level only in Mumbai. The lineages Manu2, CAS1-Delhi and T1 are more prevalent in Lucknow. Conclusion: Besides identifying novel mutations in whiB7, tlyA and gyrB target loci, our analyses unveiled a potential polymorphic and phylogeographical demarcation among two distinct regions.

3.
Front Microbiol ; 10: 1728, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31417521

RESUMEN

Natural evolution in microbes exposed to antibiotics causes inevitable selection of resistant mutants. This turns out to be a vicious cycle which requires the continuous discovery of new and effective antibiotics. For the last six decades, we have been relying on semisynthetic derivatives of natural products discovered in "Golden Era" from microbes, especially Streptomyces sp. Low success rates of rational drug-design sparked a resurgence in the invention of novel natural products or scaffolds from untapped or uncommon microbial niches. Therefore, in this study, we examined the microbial diversity inhabiting the yak milk for their ability to produce antimicrobial compounds. We prepared the crude fermentation extracts of fifty isolates from yak milk and screened them against indicator strains for the inhibitory activity. Later, with the aid of gel filtration chromatography followed by reversed-phase HPLC, we isolated one antimicrobial compound Y5-P1 from the strain Y5 (Pseudomonas koreensis) which showed bioactivity against Gram-positive and Gram-negative bacteria. The compound was chemically characterized using HRMS, FTIR, and NMR spectroscopy and identified as 1-acetyl-9H-ß-carboline-3-carboxylic acid. It showed minimum inhibitory activity (MIC) in the range of 62.5-250 µg /ml. The cytotoxicity results revealed that IC50 against two mammalian cell lines i.e., HepG2 and HEK293T was 500 and 750 µg/ml, respectively. This is the first report on the production of this derivative of ß-carboline by the microorganism. Also, the study enlightens the importance of microbes residing in uncommon environments or unexplored habitats in the discovery of a diverse array of natural products which could be designed further as drug candidates against highly resistant pathogens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA