Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxicol In Vitro ; 98: 105826, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615723

RESUMEN

Human induced pluripotent stem cells (iPSC) have the potential to produce desired target cell types in vitro and allow for the high-throughput screening of drugs/chemicals at population level thereby minimising the cost of drug discovery and drug withdrawals after clinical trials. There is a substantial need for the characterisation of the iPSC derived models to better understand and utilise them for toxicological relevant applications. In our study, iPSC (SBAD2 or SBAD3 lines obtained from StemBANCC project) were differentiated towards toxicologically relevant cell types: alveolar macrophages, brain capillary endothelial cells, brain cells, endothelial cells, hepatocytes, lung airway epithelium, monocytes, podocytes and renal proximal tubular cells. A targeted transcriptomic approach was employed to understand the effects of differentiation protocols on these cell types. Pearson correlation and principal component analysis (PCA) separated most of the intended target cell types and undifferentiated iPSC models as distinct groups with a high correlation among replicates from the same model. Based on PCA, the intended target cell types could also be separated into the three germ layer groups (ectoderm, endoderm and mesoderm). Differential expression analysis (DESeq2) presented the upregulated genes in each intended target cell types that allowed the evaluation of the differentiation to certain degree and the selection of key differentiation markers. In conclusion, these data confirm the versatile use of iPSC differentiated cell types as standardizable and relevant model systems for in vitro toxicology.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Transcriptoma , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Humanos , Transcriptoma/efectos de los fármacos , Línea Celular , Células Endoteliales/efectos de los fármacos , Células Cultivadas
2.
Cell Biol Toxicol ; 39(4): 1773-1793, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36586010

RESUMEN

Transcriptomic analysis is a powerful method in the utilization of New Approach Methods (NAMs) for identifying mechanisms of toxicity and application to hazard characterization. With this regard, mapping toxicological events to time of exposure would be helpful to characterize early events. Here, we investigated time-dependent changes in gene expression levels in iPSC-derived renal proximal tubular-like cells (PTL) treated with five diverse compounds using TempO-Seq transcriptomics with the aims to evaluate the application of PTL for toxicity prediction and to report on temporal effects for the activation of cellular stress response pathways. PTL were treated with either 50 µM amiodarone, 10 µM sodium arsenate, 5 nM rotenone, or 300 nM tunicamycin over a temporal time course between 1 and 24 h. The TGFß-type I receptor kinase inhibitor GW788388 (1 µM) was used as a negative control. Pathway analysis revealed the induction of key stress-response pathways, including Nrf2 oxidative stress response, unfolding protein response, and metal stress response. Early response genes per pathway were identified much earlier than 24 h and included HMOX1, ATF3, DDIT3, and several MT1 isotypes. GW788388 did not induce any genes within the stress response pathways above, but showed deregulation of genes involved in TGFß inhibition, including downregulation of CYP24A1 and SERPINE1 and upregulation of WT1. This study highlights the application of iPSC-derived renal cells for prediction of cellular toxicity and sheds new light on the temporal and early effects of key genes that are involved in cellular stress response pathways.


Asunto(s)
Células Madre Pluripotentes Inducidas , Transcriptoma , Perfilación de la Expresión Génica , Riñón
3.
Altern Lab Anim ; 50(1): 71-75, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35179997

RESUMEN

The need to reduce, refine and replace animal experimentation has led to a boom in the establishment of new approach methodologies (NAMs). This promising trend brings the hope that the replacement of animals by using NAMs will become increasingly accepted by regulators, included in legislation, and consequently more-often implemented by industry. The majority of NAMs, however, are still not very well understood, either due to the complexity of the applied approach or the data analysis workflow. A potential solution to this problem is the provision of better educational resources to scientists new to the area - showcasing the added value of NAMs and outlining various ways of overcoming issues associated with knowledge gaps. In this paper, the educational exchange between four institutions - namely, two universities and two SMEs - via a series of video training sessions, is described. The goal of this exchange was to showcase an exemplary event to help introduce scientists to non-animal approaches, and to actively support the development of resources enabling the use of alternatives to laboratory animals.


Asunto(s)
Experimentación Animal , Alternativas a las Pruebas en Animales , Alternativas a las Pruebas en Animales/métodos , Animales , Universidades
4.
Toxicol In Vitro ; 81: 105333, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35182771

RESUMEN

Most OECD guidelines for chemical risk assessment include tests performed on animals, raising financial, ethical and scientific concerns. Thus, the development of human-based models for toxicity testing is highly encouraged. Here, we propose an in vitro multi-organ strategy to assess the toxicity of chemicals. Human induced pluripotent stem cells (hiPSCs)-derived models of the brain, blood-brain barrier, kidney, liver and vasculature were generated and exposed to paraquat (PQ), a widely employed herbicide with known toxic effects in kidneys and brain. The models showed differential cytotoxic sensitivity to PQ after acute exposure. TempO-Seq analysis with a set of 3565 probes revealed the deregulation of oxidative stress, unfolded protein response and estrogen receptor-mediated signaling pathways, in line with the existing knowledge on PQ mechanisms of action. The main advantages of this strategy are to assess chemical toxicity on multiple tissues/organs in parallel, exclusively in human cells, eliminating the interspecies bias, allowing a better evaluation of the differential sensitivity of the models representing the diverse organs, and increasing the chance to identify toxic compounds. Furthermore, although we focused on the mechanisms of action of PQ shared by the different models, this strategy would also allow for organ-specific toxicity testing, by including more cell type-specific probes for TempO-Seq analyses. In conclusion, we believe this strategy will participate in the further improvement of chemical risk assessment for human health.


Asunto(s)
Herbicidas , Células Madre Pluripotentes Inducidas , Animales , Herbicidas/metabolismo , Herbicidas/toxicidad , Humanos , Hígado/metabolismo , Estrés Oxidativo , Paraquat/toxicidad
5.
Toxicol In Vitro ; 76: 105229, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34352368

RESUMEN

Cadmium is a well-studied environmental pollutant where the kidney and particularly the proximal tubule cells are especially sensitive as they are exposed to higher concentrations of cadmium than other tissues. Here we investigated the temporal transcriptomic alterations (TempO-Seq) of human induced pluripotent stem cell (iPSC)-derived renal proximal tubule-like (PTL) cells exposed to 5 µM cadmium chloride for 1, 2, 4, 8, 12, 16, 20, 24, 72 and 168 h. There was an early activation (within 4 h) of the metal and oxidative stress responses (metal-responsive transcription factor-1 (MTF1) and nuclear factor erythroid-2-related factor 2 (Nrf2) genes). The Nrf2 response returned to baseline within 24 h. The Activator Protein 1 (AP-1) regulated genes HSPA6 and FOSL-1 followed the Nrf2 time course. While the MTF1 genes also spiked at 4 h, they remained strongly elevated over the entire exposure period. The data and cell culture model utilised will be useful in further research aimed at the refinement of safe human exposure limits for cadmium, other metals and their mixtures.


Asunto(s)
Cloruro de Cadmio/toxicidad , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Túbulos Renales Proximales/citología , Transcriptoma/efectos de los fármacos , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas HSP70 de Choque Térmico/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Factor 2 Relacionado con NF-E2/genética , Proteínas Proto-Oncogénicas c-fos/genética , Factor de Transcripción AP-1/genética , Factores de Transcripción/genética , Factor de Transcripción MTF-1
6.
Toxicol In Vitro ; 73: 105112, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33631201

RESUMEN

The blood-brain barrier (BBB) is a highly restrictive barrier that preserves central nervous system homeostasis and ensures optimal brain functioning. Using BBB cell assays makes it possible to investigate whether a compound is likely to compromise BBBs functionality, thereby probably resulting in neurotoxicity. Recently, several protocols to obtain human brain-like endothelial cells (BLECs) from induced pluripotent stem cells (iPSCs) have been reported. Within the framework of the European MSCA-ITN in3 project, we explored the possibility to use an iPSC-derived BBB model to assess the effects of repeated dose treatment with chemicals, using Cyclosporine A (CsA) as a model compound. The BLECs were found to exhibit important BBB characteristics up to 15 days after the end of the differentiation and could be used to assess the effects of repeated dose treatment. Although BLECs were still undergoing transcriptional changes over time, a targeted transcriptome analysis (TempO-Seq) indicated a time and concentration dependent activation of ATF4, XBP1, Nrf2 and p53 stress response pathways under CsA treatment. Taken together, these results demonstrate that this iPSC-derived BBB model and iPSC-derived models in general hold great potential to study the effects of repeated dose exposure with chemicals, allowing personalized and patient-specific studies in the future.


Asunto(s)
Barrera Hematoencefálica , Ciclosporina/toxicidad , Células Endoteliales/efectos de los fármacos , Inmunosupresores/toxicidad , Células Madre Pluripotentes Inducidas/citología , Modelos Biológicos , Pruebas de Toxicidad/métodos , Línea Celular , Células Endoteliales/metabolismo , Humanos , Transcriptoma/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...