Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38903082

RESUMEN

BACKGROUND AND AIMS: In vivo induction of alcoholic chronic pancreatitis (ACP) causes significant acinar damage, increased fibroinflammatory response, and heightened activation of cyclic response element binding protein 1 (CREB) when compared with alcohol (A) or chronic pancreatitis (CP) mediated pancreatic damage. However, the study elucidating the cooperative interaction between CREB and the oncogenic Kras G12D/+ (Kras*) in promoting pancreatic cancer progression with ACP remains unexplored. METHODS: Experimental ACP induction was established in multiple mouse models, followed by euthanization of the animals at various time intervals during the recovery periods. Tumor latency was determined in these mice cohorts. Here, we established CREB deletion (Creb fl/fl ) in Ptf1a CreERTM/+ ;LSL-Kras G12D+/-(KC) genetic mouse models (KCC-/-). Western blot, phosphokinase array, and qPCR were used to analyze the pancreata of Ptf1a CreERTM+/-, KC and KCC -/- mice. The pancreata of ACP-induced KC mice were subjected to single-cell RNA sequencing (scRNAseq). Further studies involved conducting lineage tracing and acinar cell explant cultures. RESULTS: ACP induction in KC mice had detrimental effects on the pancreatic damage repair mechanism. The persistent existence of acinar cell-derived ductal lesions demonstrated a prolonged state of hyperactivated CREB. Persistent CREB activation leads to acinar cell reprogramming and increased pro-fibrotic inflammation in KC mice. Acinar-specific Creb ablation reduced advanced PanINs lesions, hindered tumor progression, and restored acinar cell function in ACP-induced mouse models. CONCLUSIONS: Our findings demonstrate that CREB cooperates with Kras* to perpetuate an irreversible ADM and PanIN formation. Moreover, CREB sustains oncogenic activity to promote the progression of premalignant lesions toward cancer in the presence of ACP.

2.
Immunol Rev ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716867

RESUMEN

Commensal microbes have the capacity to affect development and severity of autoimmune diseases. Germ-free (GF) animals have proven to be a fine tool to obtain definitive answers to the queries about the microbial role in these diseases. Moreover, GF and gnotobiotic animals can be used to dissect the complex symptoms and determine which are regulated (enhanced or attenuated) by microbes. These include disease manifestations that are sex biased. Here, we review comparative analyses conducted between GF and Specific-Pathogen Free (SPF) mouse models of autoimmunity. We present data from the B6;NZM-Sle1NZM2410/AegSle2NZM2410/AegSle3NZM2410/Aeg-/LmoJ (B6.NZM) mouse model of systemic lupus erythematosus (SLE) characterized by multiple measurable features. We compared the severity and sex bias of SPF, GF, and ex-GF mice and found variability in the severity and sex bias of some manifestations. Colonization of GF mice with the microbiotas taken from B6.NZM mice housed in two independent institutions variably affected severity and sexual dimorphism of different parameters. Thus, microbes regulate both the severity and sexual dimorphism of select SLE traits. The sensitivity of particular trait to microbial influence can be used to further dissect the mechanisms driving the disease. Our results demonstrate the complexity of the problem and open avenues for further investigations.

3.
Cancer Res ; 84(8): 1320-1332, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38285896

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a KRAS-driven inflammatory program and a desmoplastic stroma, which contribute to the profoundly chemoresistant phenotype. The tumor stroma contains an abundance of cancer-associated fibroblasts (CAF), which engage in extensive paracrine cross-talk with tumor cells to perpetuate protumorigenic inflammation. IL1α, a pleiotropic, tumor cell-derived cytokine, plays a critical role in shaping the stromal landscape. To provide insights into the molecular mechanisms regulating IL1A expression in PDAC, we performed transcriptional profiling of The Cancer Genome Atlas datasets and pharmacologic screening in PDAC cells and identified p38α MAPK as a key positive regulator of IL1A expression. Both genetic and pharmacologic inhibition of p38 MAPK significantly diminished IL1α production in vitro. Chromatin- and coimmunoprecipitation analyses revealed that p38 MAPK coordinates the transcription factors Sp1 and the p65 subunit of NFκB to drive IL1A overexpression. Single-cell RNA sequencing of a highly desmoplastic murine PDAC model, Ptf1aCre/+; LSL-KrasG12D/+; Tgfbr2flox/flox (PKT), confirmed that p38 MAPK inhibition significantly decreases tumor cell-derived Il1a and attenuates the inflammatory CAF phenotype in a paracrine IL1α-dependent manner. Furthermore, p38 MAPK inhibition favorably modulated intratumoral immunosuppressive myeloid populations and augmented chemotherapeutic efficacy to substantially reduce tumor burden and improve overall survival in PKT mice. These findings illustrate a cellular mechanism of tumor cell-intrinsic p38-p65/Sp1-IL1α signaling that is responsible for sustaining stromal inflammation and CAF activation, offering an attractive therapeutic approach to enhance chemosensitivity in PDAC. SIGNIFICANCE: Inhibition of p38 MAPK suppresses tumor cell-derived IL1α and attenuates the inflammatory stroma and immunosuppressive tumor microenvironment to overcome chemotherapeutic resistance in pancreatic cancer.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Animales , Resistencia a Antineoplásicos/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Inflamación/patología , Microambiente Tumoral
4.
Cancer Res Commun ; 3(7): 1224-1236, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37448553

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a significant contributor to cancer-related morbidity and mortality, and it is known for its resistance to conventional treatment regimens, including chemotherapy and immune checkpoint blockade (ICB)-based therapies. We have previously shown that Urolithin A (Uro A), a gut microbial metabolite derived from pomegranates, can target and inhibit KRAS-dependent PI3K/AKT/mTOR signaling pathways to overcome therapeutic resistance and improve survival in PDAC. However, the effect of Uro A on the tumor immune microenvironment and its ability to enhance ICB efficacy has not been explored. This study demonstrates that Uro A treatment reduces stromal fibrosis and reinvigorates the adaptive T-cell immune response to overcome resistance to PD-1 blockade in a genetically engineered mouse model (GEMM) of PDAC. Flow cytometric-based analysis of Uro A-treated mouse tumors revealed a significant attenuation of immunosuppressive tumor-associated M2-like macrophages with a concurrent increase in the infiltration of CD4+ and CD8+ T cells with memory-like phenotype along with reduced expression of the exhaustion-associated protein, PD-1. Importantly, the combination of Uro A treatment with anti-PD-1 immunotherapy promoted enhancement of the antitumor response with increased infiltration of CD4+ Th1 cells, ultimately resulting in a remarkable improvement in overall survival in GEMM of PDAC. Overall, our findings provide preclinical evidence for the potential of Uro A as a novel therapeutic agent to increase sensitivity to immunotherapy in PDAC and warrant further mechanistic exploration in preclinical and clinical studies. Significance: Immunotherapeutic agents are ineffective against pancreatic cancer, mainly due to the immunosuppressive tumor microenvironment and stromal desmoplasia. Our current study demonstrates the therapeutic utility of a novel gut microbial metabolite, Uro A, to remodel the stromal-immune microenvironment and improve overall survival with anti-PD-1 therapy in pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Animales , Inhibidores de Puntos de Control Inmunológico/farmacología , Linfocitos T CD8-positivos/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Microambiente Tumoral
5.
Cancer Discov ; 13(6): 1428-1453, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-36946782

RESUMEN

We have shown that KRAS-TP53 genomic coalteration is associated with immune-excluded microenvironments, chemoresistance, and poor survival in pancreatic ductal adenocarcinoma (PDAC) patients. By treating KRAS-TP53 cooperativity as a model for high-risk biology, we now identify cell-autonomous Cxcl1 as a key mediator of spatial T-cell restriction via interactions with CXCR2+ neutrophilic myeloid-derived suppressor cells in human PDAC using imaging mass cytometry. Silencing of cell-intrinsic Cxcl1 in LSL-KrasG12D/+;Trp53R172H/+;Pdx-1Cre/+(KPC) cells reprograms the trafficking and functional dynamics of neutrophils to overcome T-cell exclusion and controls tumor growth in a T cell-dependent manner. Mechanistically, neutrophil-derived TNF is a central regulator of this immunologic rewiring, instigating feed-forward Cxcl1 overproduction from tumor cells and cancer-associated fibroblasts (CAF), T-cell dysfunction, and inflammatory CAF polarization via transmembrane TNF-TNFR2 interactions. TNFR2 inhibition disrupts this circuitry and improves sensitivity to chemotherapy in vivo. Our results uncover cancer cell-neutrophil cross-talk in which context-dependent TNF signaling amplifies stromal inflammation and immune tolerance to promote therapeutic resistance in PDAC. SIGNIFICANCE: By decoding connections between high-risk tumor genotypes, cell-autonomous inflammatory programs, and myeloid-enriched/T cell-excluded contexts, we identify a novel role for neutrophil-derived TNF in sustaining immunosuppression and stromal inflammation in pancreatic tumor microenvironments. This work offers a conceptual framework by which targeting context-dependent TNF signaling may overcome hallmarks of chemoresistance in pancreatic cancer. This article is highlighted in the In This Issue feature, p. 1275.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neutrófilos , Receptores Tipo II del Factor de Necrosis Tumoral/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Inflamación/genética , Microambiente Tumoral/fisiología , Quimiocina CXCL1/genética , Neoplasias Pancreáticas
6.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36902166

RESUMEN

Anti-neoplastic agents for cancer treatment utilize many different mechanisms of action and, when combined, can result in potent inhibition of cancer growth. Combination therapies can result in long-term, durable remission or even cure; however, too many times, these anti-neoplastic agents lose their efficacy due to the development of acquired drug resistance (ADR). In this review, we evaluate the scientific and medical literature that elucidate STAT3-mediated mechanisms of resistance to cancer therapeutics. Herein, we have found that at least 24 different anti-neoplastic agents-standard toxic chemotherapeutic agents, targeted kinase inhibitors, anti-hormonal agents, and monoclonal antibodies-that utilize the STAT3 signaling pathway as one mechanism of developing therapeutic resistance. Targeting STAT3, in combination with existing anti-neoplastic agents, may prove to be a successful therapeutic strategy to either prevent or even overcome ADR to standard and novel cancer therapies.


Asunto(s)
Antineoplásicos , Resistencia a Antineoplásicos , Neoplasias , Factor de Transcripción STAT3 , Humanos , Anticuerpos Monoclonales/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Transducción de Señal , Factor de Transcripción STAT3/antagonistas & inhibidores
7.
Am J Physiol Gastrointest Liver Physiol ; 323(4): G375-G386, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36098401

RESUMEN

Heavy alcohol consumption is the dominant risk factor for chronic pancreatitis (CP); however, treatment and prevention strategies for alcoholic chronic pancreatitis (ACP) remains limited. The present study demonstrates that ACP induction in C57BL/6 mice causes significant acinar cell injury, pancreatic stellate cell (PSC) activation, exocrine function insufficiency, and an increased fibroinflammatory response when compared with alcohol or CP alone. Although the withdrawal of alcohol during ACP recovery led to reversion of pancreatic damage, continued alcohol consumption with established ACP perpetuated pancreatic injury. In addition, phosphokinase array and Western blot analysis of ACP-induced mice pancreata revealed activation of the phosphatidylinositol 3 kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) and cyclic AMP response element binding protein (CREB) signaling pathways possibly orchestrating the fibroinflammatory program of ACP pathogenesis. Mice treated with urolithin A (Uro A, a gut-derived microbial metabolite) in the setting of ACP with continued alcohol intake (during the recovery period) showed suppression of AKT and P70S6K activation, and acinar damage was significantly reduced with a parallel reduction in pancreas-infiltrating macrophages and proinflammatory cytokine accumulation. These results collectively provide mechanistic insight into the impact of Uro A on attenuation of ACP severity through suppression of PI3K/AKT/mTOR signaling pathways and can be a useful therapeutic approach in patients with ACP with continuous alcohol intake.NEW & NOTEWORTHY Our novel findings presented here demonstrate the utility of Uro A as an effective therapeutic agent in attenuating alcoholic chronic pancreatitis (ACP) severity with alcohol continuation after established disease, through suppression of the PI3K/AKT/mTOR signaling pathway.


Asunto(s)
Pancreatitis Alcohólica , Proteínas Proto-Oncogénicas c-akt , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ratones Endogámicos C57BL , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal , Pancreatitis Alcohólica/patología , Sirolimus/farmacología , Citocinas/farmacología , Consumo de Bebidas Alcohólicas , Mamíferos/metabolismo
8.
Gastroenterology ; 163(6): 1593-1612, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35948109

RESUMEN

BACKGROUND & AIMS: We have shown that reciprocally activated rat sarcoma (RAS)/mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) and Janus kinase/signal transducer and activator of transcription 3 (STAT3) pathways mediate therapeutic resistance in pancreatic ductal adenocarcinoma (PDAC), while combined MEK and STAT3 inhibition (MEKi+STAT3i) overcomes such resistance and alters stromal architecture. We now determine whether MEKi+STAT3i reprograms the cancer-associated fibroblast (CAF) and immune microenvironment to overcome resistance to immune checkpoint inhibition in PDAC. METHODS: CAF and immune cell transcriptomes in MEKi (trametinib)+STAT3i (ruxolitinib)-treated vs vehicle-treated Ptf1aCre/+;LSL-KrasG12D/+;Tgfbr2flox/flox (PKT) tumors were examined via single-cell RNA sequencing (scRNAseq). Clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats associated protein 9 silencing of CAF-restricted Map2k1/Mek1 or Stat3, or both, enabled interrogation of CAF-dependent effects on immunologic remodeling in orthotopic models. Tumor growth, survival, and immune profiling via mass cytometry by time-of-flight were examined in PKT mice treated with vehicle, anti-programmed cell death protein 1 (PD-1) monotherapy, and MEKi+STAT3i combined with anti-PD1. RESULTS: MEKi+STAT3i attenuates Il6/Cxcl1-expressing proinflammatory and Lrrc15-expressing myofibroblastic CAF phenotypes while enriching for Ly6a/Cd34-expressing CAFs exhibiting mesenchymal stem cell-like features via scRNAseq in PKT mice. This CAF plasticity is associated with M2-to-M1 reprogramming of tumor-associated macrophages, and enhanced trafficking of cluster of differentiation 8+ T cells, which exhibit distinct effector transcriptional programs. These MEKi+STAT3i-induced effects appear CAF-dependent, because CAF-restricted Mek1/Stat3 silencing mitigates inflammatory-CAF polarization and myeloid infiltration in vivo. Addition of MEKi+STAT3i to PD-1 blockade not only dramatically improves antitumor responses and survival in PKT mice but also augments recruitment of activated/memory T cells while improving their degranulating and cytotoxic capacity compared with anti-PD-1 monotherapy. Importantly, treatment of a patient who has chemotherapy-refractory metastatic PDAC with MEKi (trametinib), STAT3i (ruxolitinib), and PD-1 inhibitor (nivolumab) yielded clinical benefit. CONCLUSIONS: Combined MEKi+STAT3i mitigates stromal inflammation and enriches for CAF phenotypes with mesenchymal stem cell-like properties to overcome immunotherapy resistance in PDAC.


Asunto(s)
Adenocarcinoma , Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Células Madre Mesenquimatosas , Neoplasias Pancreáticas , Ratones , Animales , Factor de Transcripción STAT3/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Inmunoterapia , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Factores Inmunológicos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Microambiente Tumoral , Neoplasias Pancreáticas
9.
Int J Mol Sci ; 23(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35886918

RESUMEN

STAT3 and KRAS regulate cell proliferation, survival, apoptosis, cell migration, and angiogenesis. Aberrant expression of STAT3 and mutant active forms of KRAS have been well-established in the induction and maintenance of multiple cancers. STAT3 and KRAS mutant proteins have been considered anti-cancer targets; however, they are also considered to be clinically "undruggable" intracellular molecules, except for KRAS(G12C). Here we report a first-in-class molecule, a novel, single domain camelid VHH antibody (15 kDa), SBT-100, that binds to both STAT3 and KRAS and can penetrate the tumor cell membrane, and significantly inhibit cancer cell growth. Additionally, SBT-100 inhibits KRAS GTPase activity and downstream phosphorylation of ERK in vitro. In addition, SBT-100 inhibits the growth of multiple human cancers in vitro and in vivo. These results demonstrate the feasibility of targeting hard-to-reach aberrant intracellular transcription factors and signaling proteins simultaneously with one VHH to improve cancer therapies.


Asunto(s)
Anticuerpos Biespecíficos , Antineoplásicos Inmunológicos , Anticuerpos de Dominio Único , Anticuerpos Biespecíficos/farmacología , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Humanos , Mutación , Neoplasias/inmunología , Neoplasias/terapia , Proteínas Proto-Oncogénicas p21(ras)/genética , Factor de Transcripción STAT3 , Anticuerpos de Dominio Único/farmacología
10.
Front Oncol ; 12: 925687, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35800049

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive solid malignancy with a high rate of metastasis and therapeutic resistance as its major hallmarks. Although a defining mutational event in pancreatic cancer initiation is the presence of oncogenic KRAS, more advanced PDAC lesions accumulate additional genomic alterations, including loss of tumor suppressor gene TP53. Co-occurrence of mutant KRAS and TP53 in PDAC promotes hyperactivation of cancer cell signaling pathways driving epithelial to mesenchymal plasticity (EMP). The cellular process of EMP influences the biological behavior of cancer cells by increasing their migratory and invasive properties, thus promoting metastasis. Our previous work has demonstrated that oncogenic KRAS-mediated activation of cyclic AMP response element-binding protein 1 (CREB) is one of the critical drivers of PDAC aggressiveness. The therapeutic approach of targeting this key transcription factor attenuates tumor burden in genetically engineered mouse models (GEMMs) of this disease. Herein, we discuss the significant role of CREB in perpetuating disease aggressiveness and therapeutic resistance through the EMP process. Furthermore, this review updates the therapeutic implications of targeting CREB, highlighting the challenges and emerging approaches in PDAC.

11.
Oncogene ; 41(28): 3640-3654, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35701533

RESUMEN

Co-occurrent KRAS and TP53 mutations define a majority of patients with pancreatic ductal adenocarcinoma (PDAC) and define its pro-metastatic proclivity. Here, we demonstrate that KRAS-TP53 co-alteration is associated with worse survival compared with either KRAS-alone or TP53-alone altered PDAC in 245 patients with metastatic disease treated at a tertiary referral cancer center, and validate this observation in two independent molecularly annotated datasets. Compared with non-TP53 mutated KRAS-altered tumors, KRAS-TP53 co-alteration engenders disproportionately innate immune-enriched and CD8+ T-cell-excluded immune signatures. Leveraging in silico, in vitro, and in vivo models of human and murine PDAC, we discover a novel intersection between KRAS-TP53 co-altered transcriptomes, TP63-defined squamous trans-differentiation, and myeloid-cell migration into the tumor microenvironment. Comparison of single-cell transcriptomes between KRAS-TP53 co-altered and KRAS-altered/TP53WT tumors revealed cancer cell-autonomous transcriptional programs that orchestrate innate immune trafficking and function. Moreover, we uncover granulocyte-derived inflammasome activation and TNF signaling as putative paracrine mediators of innate immunoregulatory transcriptional programs in KRAS-TP53 co-altered PDAC. Immune subtyping of KRAS-TP53 co-altered PDAC reveals conflation of intratumor heterogeneity with progenitor-like stemness properties. Coalescing these distinct molecular characteristics into a KRAS-TP53 co-altered "immunoregulatory program" predicts chemoresistance in metastatic PDAC patients enrolled in the COMPASS trial, as well as worse overall survival.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/genética , Animales , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Humanos , Ratones , Mutación , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Microambiente Tumoral , Proteína p53 Supresora de Tumor/genética , Neoplasias Pancreáticas
12.
Biochim Biophys Acta Rev Cancer ; 1877(1): 188670, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34923027

RESUMEN

As inflammation plays a critical role in the development and progression of cancer, therapeutic targeting of cytokine pathways involved in both tumorigenesis and dictating response to clinical treatments are of significant interest. Recent evidence has highlighted the importance of the pro-inflammatory cytokine interleukin-1 (IL-1) as a key mediator of tumor growth, metastatic disease spread, immunosuppression, and drug resistance in cancer. IL-1 promotes tumorigenesis through diverse mechanisms, including the activation of oncogenic signaling pathways directly in tumor cells and via orchestrating crosstalk between the cellular constituents of the tumor microenvironment (TME), thereby driving cancer growth. This review will provide an overview of IL-1 signaling and physiology and summarize the disparate mechanisms involving IL-1 in tumorigenesis and cancer progression. Additionally, clinical studies targeting IL-1 signaling in the management of solid organ tumors will be summarized herein.


Asunto(s)
Neoplasias , Microambiente Tumoral , Carcinogénesis , Humanos , Interleucina-1 , Neoplasias/patología , Transducción de Señal/fisiología
13.
Mol Cancer Ther ; 20(11): 2280-2290, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34518296

RESUMEN

A hallmark of pancreatic ductal adenocarcinoma (PDAC) is the presence of a dense, desmoplastic stroma and the consequent altered interactions between cancer cells and their surrounding tumor microenvironment (TME) that promote disease progression, metastasis, and chemoresistance. We have previously shown that IL6 secreted from pancreatic stellate cells (PSC) stimulates the activation of STAT3 signaling in tumor cells, an established mechanism of therapeutic resistance in PDAC. We have now identified the tumor cell-derived cytokine IL1α as an upstream mediator of IL6 release from PSCs that is involved in STAT3 activation within the TME. Herein, we show that IL1α is overexpressed in both murine and human PDAC tumors and engages with its cognate receptor IL1R1, which is strongly expressed on stromal cells. Further, we show that IL1R1 inhibition using anakinra (recombinant IL1 receptor antagonist) significantly reduces stromal-derived IL6, thereby suppressing IL6-dependent STAT3 activation in human PDAC cell lines. Anakinra treatment results in significant reduction in IL6 and activated STAT3 levels in pancreatic tumors from Ptf1aCre/+;LSL-KrasG12D/+; Tgfbr2flox/flox (PKT) mice. Additionally, the combination of anakinra with cytotoxic chemotherapy significantly extends overall survival compared with vehicle treatment or anakinra monotherapy in this aggressive genetic mouse model of PDAC. These data highlight the importance of IL1 in mediating tumor-stromal IL6/STAT3 cross-talk in the TME and provide a preclinical rationale for targeting IL1 signaling as a therapeutic strategy in PDAC.


Asunto(s)
Interleucina-6/metabolismo , Neoplasias Pancreáticas/genética , Receptores de Interleucina-1/antagonistas & inhibidores , Animales , Humanos , Ratones , Neoplasias Pancreáticas/patología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...