Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123671, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38000325

RESUMEN

Reactive oxygen species (ROS) plays important role to maintain homeostasis in living bodies. Here we have studied interaction of ROS generated from hydrogen peroxide (H2O2) with a well-known spectroscopic probe Rose Bengal (RB) encapsulated in nanoscopic sodium dodecyl sulphate (SDS) micelles in aqueous medium and entrapped in microscopic nylon 66 solid matrix generated using electrospinning technique. A detailed spectroscopic characterization of ROS with SDS encapsulated RB (RB-SDS) shows efficient interaction compared to that in bulk medium. The time resolved analysis on the probe based on femtosecond resolved 2D-spectrum time images collected from streak camera reveal the simultaneous existence of an ultrafast electron (∼6 ps) and a hole transfer mechanism (∼93 ps) resulting from generation of hydroxyl radicals through photobleaching of the probe in presence of H2O2. Based on the spectroscopic and time resolved studies of RB in bulk and in restricted (SDS) medium, we have further translated it for the development of an in-field prototype device which utilizes RB as a ROS sensor impregnated in a nylon thin film. The microscopic nylon solid matrix characterized by scanning electron microscope (SEM) shows porous structure for holding sample containing ROS. Our study quantitatively measures the amount of ROS by using RB embedded microfiber membrane. Thus, our developed prototype device based on RB embedded on the nylon matrix would be beneficial for the potential use in quantification of ROS in extracellular fluids and food materials.

2.
Sci Rep ; 13(1): 17306, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828100

RESUMEN

The recent prediction of diabetes to be a global pandemic invites a detection strategy preferably non-invasive, and bloodless to manage the disease and the associated complications. Here, we have synthesized chitosan polymer functionalized, organic-inorganic bio-compatible nano-hybrids of Mn3O4 nanoparticles, and characterized it by utilizing several optical methodologies for the structural characterization which shows the Michaelis Menten (MM) kinetics for glucose and alpha-amylase protein (well-known diabetes biomarkers). We have also studied the potentiality for the detection of alpha-amylase in human salivary secretion which is reported to be strongly correlated with uncontrolled hyperglycemia. Finally, we have developed a prototype for the measurement of glucose (LOD of 0.38 mg/dL, LOQ of 1.15 mg/dL) and HbA1c (LOD of 0.15% and LOQ of 0.45%) utilizing the basic knowledge in the study for the detection of uncontrolled hyperglycemia at the point-of-care. With the limited number of clinical trials, we have explored the potential of our work in combating the diabetic pandemic across the globe in near future.


Asunto(s)
Diabetes Mellitus , Hiperglucemia , Humanos , Saliva/metabolismo , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/metabolismo , Glucosa/metabolismo , Hiperglucemia/diagnóstico , Hiperglucemia/metabolismo , Análisis Espectral , alfa-Amilasas/metabolismo
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122842, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37216816

RESUMEN

Even in the era of smart technologies and IoT enabled devices, tea testing technique continues to be a person specific subjective task. In this study, we have employed optical spectroscopy-based detection technique for the quantitative validation of tea quality. In this regard, we have employed the external quantum yield of quercetin at 450 nm (λex = 360 nm), which is an enzymatic product generated by the activity of ß-glucosidase on rutin, a naturally occurring metabolite responsible for tea-flavour (quality). We have found that a specific point in a graph representing Optical Density and external Quantum Yield as independent and dependent variables respectively of an aqueous tea extract objectively indicates a specific variety of the tea. A variety of tea samples from various geographical origin have been analysed with the developed technique and found to be useful for the tea quality assessment. The principal component analysis distinctly showed the tea samples originated from Nepal and Darjeeling having similar external quantum yield, while the tea samples from Assam region had a lower external quantum yield. Furthermore, we have employed experimental and computational biology techniques for the detection of adulteration and health benefit of the tea extracts. In order to assure the portability/field use, we have also developed a prototype which confirms the results obtained in the laboratory. We are of the opinion that the simple user interface and almost zero maintenance cost of the device will make it useful and attractive with minimally trained manpower at low resource setting.


Asunto(s)
Camellia sinensis , , Humanos , Té/química , Análisis Espectral , Quercetina , Extractos Vegetales , Biomarcadores , Camellia sinensis/química
4.
Biosensors (Basel) ; 13(2)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36831951

RESUMEN

This paper represents the synthesis, characterization and validation of a cobalt chloride functionalised nano-porous cellulose membrane, a unique sensor for non-contact measurement of water potential in various biomedical and environmentally important matrices. The developed nano sensor, along with associated electronic components, is assembled as a prototype device called "MEGH" (Measuring Essential Good Hydration) to measure essential hydration of matrices of both environmental and biomedical importance, including soil and human skin. The relative humidity above the soil surface in equilibrium with the soil moisture has been studied for both hydrophobic and hydrophilic soil types. Our studies confirm that the percentage of water available to plants is greater in hydrophobic soil rather than in hydrophilic soil, which has also been corroborated using simulation studies. Furthermore, the requirement of hydration in human skin has also been evaluated by measuring the water potential of both dry and moist skin.


Asunto(s)
Suelo , Agua , Humanos , Agua/análisis , Interacciones Hidrofóbicas e Hidrofílicas , Suelo/química
5.
Sci Rep ; 13(1): 2370, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759533

RESUMEN

The study was aimed to evaluate the performance of a newly developed spectroscopy-based non-invasive and noncontact device (SAMIRA) for the simultaneous measurement of hemoglobin, bilirubin and oxygen saturation as an alternative to the invasive biochemical method of blood sampling. The accuracy of the device was assessed in 4318 neonates having incidences of either anemia, jaundice, or hypoxia. Transcutaneous bilirubin, hemoglobin and blood saturation values were obtained by the newly developed instrument which was corroborated with the biochemical blood tests by expert clinicians. The instrument is trained using Artificial Neural Network Analysis to increase the acceptability of the data. The artificial intelligence incorporated within the instrument determines the disease condition of the neonate. The Pearson's correlation coefficient, r was found to be 0.987 for hemoglobin estimation and 0.988 for bilirubin and blood gas saturation respectively. The bias and the limits of agreement for the measurement of all the three parameters were within the clinically acceptance limit.


Asunto(s)
Bilirrubina , Hemoglobinas , Saturación de Oxígeno , Oxígeno , Sistemas de Atención de Punto , Análisis Espectral , Humanos , Recién Nacido , Inteligencia Artificial , Bilirrubina/sangre , Hemoglobinas/análisis , Oxígeno/sangre , Análisis Espectral/instrumentación , Análisis Espectral/métodos , Imagen Óptica/instrumentación , Imagen Óptica/métodos
6.
Mater Today Proc ; 80: 1846-1851, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34178606

RESUMEN

The current COVID-19 pandemic has increased the use of alcohol based hand sanitisers globally. These available alcohol based sanitisers cannot provide an antibacterial effect for an extended period of time, after the evaporation of ethanol. Hence, the need for a sanitiser with an anti-microbial activity combined with a long lasting effect is the need of the hour. In this study, we report the synthesis of a long lasting sanitiser from ozonated omega 9 fatty acid esters in an ethanolic medium. The formed vesicles made of the fatty acids have been characterized by DLS, Zeta potential, and time resolved fluorescence anisotropy studies. Ethanol although, provides an antibacterial effect, the effect is more pronounced in our prepared formulation owing to its high peroxide value that generates additional oxidative stress. Finally, this additional antimicrobial effect will have relevance in the current COVID-19 scenario in providing a long lasting hand sanitiser.

7.
Rev Sci Instrum ; 93(11): 115105, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461487

RESUMEN

The deteriorating water environment worldwide, mainly due to population explosion and uncontrolled direct disposal of harmful industrial and farming wastes, earnestly demands new approaches and accurate technologies to monitor water quality before consumption overcoming the shortcomings of the current methodologies. A spectroscopic water quality monitoring and early-warning instrument for evaluating acute water toxicity are the need of the hour. In this study, we have developed a prototype capable of the quantification of dissolved organic matter, dissolved chemicals, and suspended particulate matter in trace amounts dissolved in the water. The prototype estimates the water quality of the samples by measuring the absorbance, fluorescence, and scattering of the impurities simultaneously. The performance of the instrument was evaluated by detecting common water pollutants such as Benzopyrene, Crystal Violet, and Titanium di-oxide. The limit of detection values was found to be 0.50, 23.9, and 23.2 ppb (0.29 µM), respectively.


Asunto(s)
Benzo(a)pireno , Benzopirenos , Análisis Espectral , Materia Orgánica Disuelta , Violeta de Genciana
8.
Biosens Bioelectron ; 218: 114764, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36206669

RESUMEN

Urinary bladder cancer (UBC) is one of the most common cancers and has notoriously high risk of recurrence and mortality across the globe. Current clinical initial diagnostic approaches are either invasive or lacks sensitivity. In this study, an attempt has been made to invent a cost-effective, novel, portable diagnostic device based on the environmental sensitive fluorophores namely Nile Red (NR), Eosin Y (EY) and Rose Bengal (RB). They act as sensing agents for detecting volatile organic compounds (VOC) exclusively present in the urine sample of UBC patients and differentiate the UBC samples from the healthy control group. Upon exposure with a particular group of VOCs, a significant amount of increment in fluorescence intensities of NR, EY and RB were detected and recorded in our indigenously developed "NABIL" device. To check the performance of NABIL, the data collected from the device was compared with the conventional techniques by arranging a clinical trial with 21 healthy controls and 52 UBC patients. With the assistance of our analysis technique based on LabVIEW platform, very high sensitivity and accuracy from healthy controls have been achieved. For UBC patients, it shows impressive diagnostic results. In addition, depending on the sample processing mechanism, NABIL device can also reveal the grade of UBC and prognosis under treatment. Overall, this study contributes a novel, non-invasive, easy-to-use, inexpensive, real-time, accurate method for selectively UBC diagnosis, which can be useful for personalized care/diagnosis and postoperative surveillance, resulting in saving more lives.


Asunto(s)
Técnicas Biosensibles , Neoplasias de la Vejiga Urinaria , Compuestos Orgánicos Volátiles , Humanos , Biomarcadores , Biomarcadores de Tumor/orina , Eosina Amarillenta-(YS) , Rosa Bengala , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/orina
9.
Inorg Chem ; 61(33): 13115-13124, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-35950896

RESUMEN

Toxicity induced by inorganic arsenic as AsO33- (iAsIII) is of global concern. Reliable detection of the maximum allowed contaminant level for arsenic in drinking water and in the cellular system remains a challenge for the water quality management and assessment of toxicity in the cellular milieu, respectively. A new Ir(III)-based phosphorescent molecule (AS-1; λExt = 415 nm and λEms = 600 nm, Φ = 0.3) is synthesized for the selective detection of iAsIII in an aqueous solution with a ratiometric luminescence response even in the presence of iAsV and all other common inorganic cations and anions. The relatively higher affinity of the thioimidazole ligand (HPBT) toward iAsIII led to the formation of a fluorescent molecule iAsV-HPBT (λExt = 415 nm and λEms = 466 nm, Φ = 0.28) for the reaction of iAsIII and AS-1. An improved limit of quantitation (LOQ) down to 0.2 ppb is achieved when AS-1 is used in the CTAB micellar system. Presumably, the cationic surfactants favor the localization of AS-1@CTABMicelle in mitochondria of MCF7 cells, and this is confirmed from the images of the confocal laser fluorescence scanning microscopic studies. Importantly, cell viability assay studies confirm that AS-1@CTABMicelle induces dose-dependent detoxification of iAsIII in live cells. Further, luminescence responses at 466 nm could be utilized for developing a hand-held device for the in-field application. Such a reagent that allows for ratiometric detection of iAsIII with LOQ of 2.6 nM (0.5 ppb) in water, as well as helps in visualizing its distribution in mitochondria with a detoxifying effect, is rather unique in contemporary literature.


Asunto(s)
Arsénico , Arsénico/toxicidad , Cetrimonio , Indicadores y Reactivos , Micelas , Mitocondrias
10.
Rev Sci Instrum ; 93(5): 054101, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35649790

RESUMEN

We developed an integrated device composed of a single-probe Electroencephalogram (EEG) and Charge Coupled Device (CCD) based motion sensors for objective measurement of Attention-deficit Hyperactivity Disorder (ADHD). While the measurement of attention-deficit hyperactivity disorder (MAHD) relies on the EEG signal for the assessment of attention during a given structured task, the CCD sensor depicts the movement pattern of the subjects engaged in a continuous performance task. A statistical analysis of attention and movement patterns was performed, and the accuracy of completed tasks was analyzed using indigenously developed software. The device with the embedded software is intended to improve certainty with criterion E. We used the EEG signal from a single-channel dry sensor placed on the frontal lobe of the head of the subjects (3-5 year old pre-schoolers). During the performance of the task power for delta and beta, EEG waves from the subjects are found to be correlated with relaxation and attention/cognitive load conditions. While the relaxation condition of the subject hints at hyperactivity, a more direct CCD-based motion sensor is used to track the physical movement of the subject engaged in a continuous performance task. We used our indigenously developed software for statistical analysis to derive a scale for the objective assessment of ADHD. We also compared our scale with clinical ADHD evaluations and found a significant correlation between the objective assessment of the ADHD subjects and the clinician's conventional evaluation. MAHD, the integrated device, is supposed to be an auxiliary tool to improve the accuracy of ADHD diagnosis by supporting greater criterion E certainty.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Trastorno por Déficit de Atención con Hiperactividad/psicología , Preescolar , Electroencefalografía , Humanos
11.
Phys Chem Chem Phys ; 24(10): 6176-6184, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35229087

RESUMEN

The potentiality of Förster resonance energy transfer (FRET) for studying molecular interactions inside biological tissues with improved spatial (Angström) and temporal (picosecond) resolution is well established. On the other hand, the efficacy of diffuse reflectance spectroscopy (DRS) that uses optical radiation in order to determine physiological parameters including haemoglobin, and oxygen saturation is well known. Here we have made an attempt to combine diffuse reflectance spectroscopy (DRS) with picosecond-resolved FRET in order to show improvement in the exploration of molecular contacts in biological tissue models. We define the technique as ultrafast time-resolved diffuse reflectance spectroscopy (UTRDRS). The illuminated photon of the fluorophore from the surface of the tissue-mimicking layers carries the hidden information of the molecular contact. In order to investigate the validation of the Kubelka-Munk (KM) formulism for the developed UTRDRS technique in tissue phantoms, we have studied the propagation of incandescent and picosecond-laser light through several layers of cellulose membranes. While picosecond-resolved FRET in the diffuse reflected light confirms the hidden nano-contact (4.6 nm) of two different dye layers (8-anilino-1-naphthalenesulfonic acid and Nile blue), high-resolution optical microscopy on the cross-section of the layers reveals the proximity and contacts of the layers with limited spatial resolution (∼300 nm). We have also investigated two biologically relevant molecules, namely carboxyfluorescein and haemoglobin, in tissue phantom layers in order to show the efficacy of the UTRDRS technique. Overall, our studies based on UTRDRS in tissue mimicking layers may have potential applications in non-invasive biomedical diagnosis for patients suffering from skin diseases.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Luz , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes , Hemoglobinas , Humanos , Análisis Espectral
12.
Chembiochem ; 23(9): e202200109, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35225409

RESUMEN

Drug delivery to a target without adverse effects is one of the major criteria for clinical use. Herein, we have made an attempt to explore the delivery efficacy of SDS surfactant in a monomer and micellar stage during the delivery of the model drug, Toluidine Blue (TB) from the micellar cavity to DNA. Molecular recognition of pre-micellar SDS encapsulated TB with DNA occurs at a rate constant of k1 ∼652 s-1 . However, no significant release of encapsulated TB at micellar concentration was observed within the experimental time frame. This originated from the higher binding affinity of TB towards the nano-cavity of SDS at micellar concentration which does not allow the delivery of TB from the nano-cavity of SDS micelles to DNA. Thus, molecular recognition controls the extent of DNA recognition by TB which in turn modulates the rate of delivery of TB from SDS in a concentration-dependent manner.


Asunto(s)
ADN , Micelas , Genómica , Análisis Espectral , Tensoactivos
13.
ChemMedChem ; 16(24): 3739-3749, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34550644

RESUMEN

Functionalized nanoparticles reveal new frontiers in therapeutics and diagnostics, simultaneously referred to as theranostics. Functionalization of an inorganic nanoparticle (NP) with an organic ligand determines the interaction of the functionalized NPs with various cellular components, leading to the desired therapeutic effect, while diminishing adverse side effects. Apart from the therapeutic effect of the nanoparticles, other physical properties of the organic-inorganic complex (nanohybrid) including fluorescence, X-ray or MRI contrast offer diagnosis of the anomalous target cell. In this study we functionalized Mn3 O4 NPs with organic citrate (C-Mn3 O4 ) and folic acid (FA-Mn3 O4 ) ligands and investigated their antimicrobial activities using Staphylococcus hominis as a model bacteria, which can be remediated through their membrane rupture. While high-resolution transmission microscopy (HR-TEM), XRD, DLS, absorbance and fluorescence spectroscopy were used for structural characterisation of the functionalised NPs, zeta potential measurements and temperature-dependent reactive oxygen speices (ROS) generation reveal their drug action. We used high-end density functional theory (DFT) calculations to rationalise the specificity of the drug action of the NPs. Picosecond-resolved FRET studies confirm the enhanced affinity of FA-Mn3 O4 to the bacteria relative to C-Mn3 O4 , leading to enhanced antimicrobial activity. We have shown that the functionalised nanoparticles offer significant X-ray contrast in in-vitro studies, indicating the FA-Mn3 O4 NPs to be a potential theranostic agent against bacterial infection.


Asunto(s)
Antibacterianos/farmacología , Teoría Funcional de la Densidad , Staphylococcus hominis/efectos de los fármacos , Antibacterianos/química , Ácido Cítrico/química , Ácido Cítrico/farmacología , Relación Dosis-Respuesta a Droga , Dispersión Dinámica de Luz , Ácido Fólico/química , Ácido Fólico/farmacología , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Estructura Molecular , Nanopartículas/química , Óxidos/química , Óxidos/farmacología , Espectrometría de Fluorescencia , Relación Estructura-Actividad , Nanomedicina Teranóstica , Difracción de Rayos X
14.
ACS Biomater Sci Eng ; 7(6): 2475-2484, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-34060316

RESUMEN

Precise control of intracellular redox status, i.e., maintenance of the physiological level of reactive oxygen species (ROS) for mediating normal cellular functions (oxidative eustress) while evading the excess ROS stress (distress), is central to the concept of redox medicine. In this regard, engineered nanoparticles with unique ROS generation, transition, and depletion functions have the potential to be the choice of redox therapeutics. However, it is always challenging to estimate whether ROS-induced intracellular events are beneficial or deleterious to the cell. Here, we propose the concept of redox buffering capacity as a therapeutic index of engineered nanomaterials. As a steady redox state is maintained for normal functioning cells, we hypothesize that the ability of a nanomaterial to preserve this homeostatic condition will dictate its therapeutic efficacy. Additionally, the redox buffering capacity is expected to provide information about the nanoparticle toxicity. Here, using citrate-functionalized trimanganese tetroxide nanoparticles (C-Mn3O4 NPs) as a model nanosystem, we explored its redox buffering capacity in erythrocytes. Furthermore, we went on to study the chronic toxic effect (if any) of this nanomaterial in the animal model to co-relate with the experimentally estimated redox buffering capacity. This study could function as a framework for assessing the capability of a nanomaterial as redox medicine (whether maintains eustress or damages by creating distress), thus orienting its application and safety for clinical use.


Asunto(s)
Nanopartículas , Nanoestructuras , Animales , Nanoestructuras/toxicidad , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno
15.
Int J Biol Macromol ; 176: 137-144, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33548310

RESUMEN

Human serum albumin (HSA) plays a pivotal role in drug release from its delivery vehicles such as cyclodextrins (CDs) by binding to the drugs. Here molecular recognition and binding of a drug mimic (CD1) to HSA have been explored in a microfluidic channel when CD1 is encapsulated in ß-cyclodextrin (ßCD) and heptakis(2,3,6-tri-O-methyl)-ß-cyclodextrin (TRIMEB), respectively, to investigate whether change of the host vehicle modulate the rate of drug binding to the serum protein. Molecular recognition of ßCD encapsulated CD1 by HSA occurs by the conformational selection fit mechanism leading to rapid binding of CD1 to HSA (k1 ~ 700 s-11) when the ßCD/CD1 complex interacts with HSA. In contrary, HSA recognizes CD1 encapsulated in TRIMEB by an induced fit mechanism leading to a significantly slower binding rate (k1 ~ 20.8 s-1) of the drug mimic to the protein. Thus molecular recognition controls the rate of HSA binding by CD1 which in turn modulates the rate of delivery of the drug mimic from its macrocyclic hosts. The remarkable change in the molecular recognition pathway of CD1 by HSA, upon change of the host from ßCD to TRIMEB, originates from significantly different conformational flexibility of the host/drug mimic complexes.


Asunto(s)
Albúmina Sérica Humana/química , Biomimética , Conformación de Carbohidratos , Ciclodextrinas/química , Liberación de Fármacos , Polarización de Fluorescencia , Humanos , Cinética , Microfluídica , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Albúmina Sérica Humana/metabolismo , Espectrometría de Fluorescencia , beta-Ciclodextrinas/química
16.
Trans Indian Natl Acad Eng ; 6(2): 355-364, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35837575

RESUMEN

Regular monitoring of electrolyte balance is essential for patients suffering from chronic kidney disease (CKD), particularly those undergoing dialysis. In the context of the recent COVID-19 pandemic, more severe forms of infection are observed in elderly individuals and patients having co-morbidities like CKD. The repeated blood tests for the monitoring of electrolyte balance predispose them not only to COVID-19 but also other to hospital-acquired infections (HAI). Therefore, a non-invasive method for easy detection of essential electrolyte (K+ and Na+) levels is urgently needed. In this study, we developed an optical emission spectroscopy-based non-invasive device for simultaneous monitoring of salivary Na+ and K+ levels in a fast and reliable way. The device consisted of a closed spark chamber, micro-spectrometer, high voltage spark generator, electronic circuits, optical fiber, and an indigenously developed software based on the LabVIEW platform. The optical emission originating from the biological sample (i.e., saliva) due to recombination of ions energized by impingement of electrons returning from high voltage spark provides necessary information about the concentration of electrolytes. A small-scale clinical trial on 30 healthy human subjects shows the potential of the indigenously developed device in determining salivary Na + and K+ concentration. The low-cost, portable, point-of-care device requires only 2 mL of sample, and can simultaneously measure 1.0-190.0 mM Na+, and 1.0-270.9 mM K+ . To our understanding, the present work will find its relevance in combating COVID-19 morbidities, along with regular CKD patient-care.

17.
Front Oncol ; 10: 529132, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33194588

RESUMEN

Molecular interaction of aromatic dyes with biological macromolecules are important for the development of minimally invasive disease diagnostic biotechnologies. In the present work, we have used Toluidine Blue (TB) as a model dye, which is a well-known staining agent for the diagnosis of oral cancer and have studied the interaction of various biological macromolecules (protein and DNA) with the dye at different pH. Our spectroscopic studies confirm that TB interacts with Human Serum Albumin (HSA), a model protein at very high pH conditions which is very hard to achieve physiologically. On the other hand, TB significantly interacts with the DNA at physiological pH value (7.4). Our molecular studies strengthen the understanding of the Toluidine Blue staining of cancer cells, where the relative ratio of the nucleic acids is higher than the normal intracellular content. We have also developed a non-invasive, non-contact spectroscopic technique to explore the possibility of quantitatively detecting oral cancer by exploiting the interaction of TB with DNA. We have also reported development of a prototype named "Oral-O-Scope" for the detection of Oral cancer and have carried out human studies using the prototype.

18.
Sci Rep ; 10(1): 11149, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32636410

RESUMEN

The study was aimed to evaluate the performance of a newly developed non-invasive and non-contact bilirubin measurement device (AJO-Neo) as an alternative to the conventional invasive biochemical method of total serum bilirubin (TSB) estimation in preterm and term neonates suffering from hyperbilirubinemia associated with risk factors, and/or undergoing phototherapy. The safety and efficacy of the device were assessed in 1968 neonates with gestational ages ranging from 28 to 41 weeks and suffering from incidences of hyperbilirubinemia. Linear regression analysis showed a good correlation between AJO-Neo and the conventional method of TSB (Pearson's coefficient, r = 0.79). The small bias (0.27 mg/dL) and limits of agreements (- 3.44 to 3.99 mg/dL) were within the range of clinical acceptance. The device was also precise in the measurement of bilirubin levels in all subgroups of the study. The receiver operator curve (ROC), that takes account of both sensitivity and specificity of a device showed high efficacy of the device (area under the curve, AUC = 0.83) in the detection of bilirubin. While monitoring the bilirubin level during phototherapy, the device indicated promising results showing good agreement with TSB. Specificities and sensitivities of the device indicated a much higher accuracy in neonates with associated risk factors for hyperbilirubinemia. Hence, the newly developed device (AJO-Neo) is reliable in measuring bilirubin level in preterm, and term neonates irrespective of gestational or postnatal age, sex, risk factors, feeding behavior or skin color.


Asunto(s)
Bilirrubina/sangre , Hiperbilirrubinemia Neonatal/diagnóstico , Peso al Nacer , Femenino , Edad Gestacional , Humanos , Hiperbilirrubinemia Neonatal/sangre , Recién Nacido , Masculino , Estudios Prospectivos , Curva ROC , Reproducibilidad de los Resultados , Factores de Riesgo , Sensibilidad y Especificidad
19.
PLoS One ; 15(1): e0227584, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31917807

RESUMEN

Ultrasensitive detection of heavy metal ions in available water around us is a great challenge for scientists since long time. We developed an optical technique that combines Rayleigh scattering of UV light (365 nm) and post-sample fluorescence detection from colloidal silver (Ag) nanoparticles (NPs) having a surface plasmon resonance (SPR) band at 420 nm. The efficacy of the technique is tested by the detection of several model toxic ions, including mercury, lead, and methylmercury in aqueous media. The light scattering from the Hg-included/inflated Ag NPs at 395 nm was observed to saturate the light sensor even with ppm-order concentrations of Hg ions in the water sample. However, the pollutant is not detected at lower concentrations at this wavelength. Instead, the fluorescence of a high-pass filter (cut-off at 400 nm) at 520 nm is applied to detect pollutant concentrations of up to several hundreds of ppm in the water sample. We also detected lead and methylmercury as model pollutants in aqueous media and validated the efficacy of our strategy. Finally, we report the development of a working prototype based on the strategy developed for efficient detection of pollutants in drinking/agricultural water.


Asunto(s)
Monitoreo del Ambiente/métodos , Nanopartículas del Metal/química , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/instrumentación , Diseño de Equipo , Fluorescencia , Límite de Detección , Metales Pesados/química , Microscopía Electrónica de Transmisión/instrumentación , Microscopía Electrónica de Transmisión/métodos , Dispersión de Radiación , Sensibilidad y Especificidad , Plata/química , Espectrofotometría Ultravioleta , Resonancia por Plasmón de Superficie/métodos , Rayos Ultravioleta , Contaminación del Agua/análisis
20.
J Dairy Sci ; 103(2): 1366-1376, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31785872

RESUMEN

Riboflavin (RF), commonly known as vitamin B2, is an essential ingredient in any milk variety of animal origin. The photophysics of the molecule RF, including its interaction with biological macromolecules, are well studied. Here, we have investigated the possibility of the molecule as a potential biomarker of milk quality. We also found omnipresence of this molecule in milk of plant origin (soy milk). Spectroscopic studies on various animal and plant milks of different commercial origins confirmed the potential of RF for use in identifying the quality of the milk varieties. Our developed strategy involved identification or spectroscopic signature of RF by measuring optical density at 365 nm (quality factor 1) and fluorescence intensity around 520 nm (excitation at 365 nm; quality factor 2) on a very small amount of whole milk (10 µL). We also developed a prototype device called Mil-Q-Way to be used in the real field. The required interfacing software in the LabView platform was also developed. A 2-parameter plot (quality factor 1 on the x-axis and quality factor 2 on the y-axis) called the Mil-Q-Way plot clearly differentiates the quality of milks of different commercial origins. The low-cost device based on simple spectroscopy was shown to screen for the presence of harmful adulterants in drinkable milk.


Asunto(s)
Biomarcadores/análisis , Leche/normas , Riboflavina/análisis , Leche de Soja/normas , Análisis Espectral , Animales , Fluorescencia , Leche/química , Programas Informáticos , Leche de Soja/química , Análisis Espectral/instrumentación , Análisis Espectral/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...