Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ChemistryOpen ; 13(2): e202300055, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37874015

RESUMEN

This work mainly focuses on synthesizing and evaluating the efficiency of methylammonium lead halide-based perovskite (MAPbX3 ; X=Cl, Br, I) solar cells. We used the colloidal Hot-injection method (HIM) to synthesize MAPbX3 (X=Cl, Br, I) perovskites using the specific precursors and organic solvents under ambient conditions. We studied the structural, morphological and optical properties of MAPbX3 perovskites using XRD, FESEM, TEM, UV-Vis, PL and TRPL (time-resolved photoluminescence) characterization techniques. The particle size and morphology of these perovskites vary with respect to the halide variation. The MAPbI3 perovskite possesses a low band gap and low carrier lifetime but delivers the highest PCE among other halide perovskite samples, making it a promising candidate for solar cell technology. To further enrich the investigations, the conversion efficiency of the MAPbX3 perovskites has been evaluated through extensive device simulations. Here, the optical constants, band gap energy and carrier lifetime of MAPbX3 were used for simulating three different perovskite solar cells, namely I, Cl or Br halide-based perovskite solar cells. MAPbI3 , MAPbBr3 and MAPbCl3 absorber layer-based devices showed ~13.7 %, 6.9 % and 5.0 % conversion efficiency. The correlation between the experimental and SCAPS simulation data for HIM-synthesized MAPBX3 -based perovskites has been reported for the first time.

2.
Micromachines (Basel) ; 14(4)2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37420962

RESUMEN

The controlled and efficient formation of oxygen vacancies on the surface of metal oxide semiconductors is required for their use in gas sensors. This work addresses the gas-sensing behaviour of tin oxide (SnO2) nanoparticles for nitrogen oxide (NO2), NH3, CO, and H2S detection at various temperatures. Synthesis of SnO2 powder and deposition of SnO2 film is conducted using sol-gel and spin-coating methods, respectively, as these methods are cost-effective and easy to handle. The structural, morphological, and optoelectrical properties of nanocrystalline SnO2 films were studied using XRD, SEM, and UV-visible characterizations. The gas sensitivity of the film was tested by a two-probe resistivity measurement device, showing a better response for the NO2 and outstanding low-concentration detection capacity (down to 0.5 ppm). The anomalous relationship between specific surface area and gas-sensing performance indicates the SnO2 surface's higher oxygen vacancies. The sensor depicts a high sensitivity at 2 ppm for NO2 with response and recovery times of 184 s and 432 s, respectively, at room temperature. The result demonstrates that oxygen vacancies can significantly improve the gas-sensing capability of metal oxide semiconductors.

3.
ACS Appl Mater Interfaces ; 15(25): 30443-30454, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37326513

RESUMEN

The development of imaging technology and optical communication demands a photodetector with high responsiveness. As demonstrated by microfabrication and nanofabrication technology advancements, recent progress in plasmonic sensor technologies can address this need. However, these photodetectors have low optical absorption and ineffective charge carrier transport efficiency. Sb2Se3 is light-sensitive material with a high absorption coefficient, making it suitable for photodetector applications. We developed an efficient, scalable, low-cost near-infrared (NIR) photodetector based on a nanostructured Sb2Se3 film deposited on p-type micropyramidal Si (made via the wet chemical etching process), working on photoconductive phenomena. Our results proved that, at the optimized thickness of the Sb2Se3 layer, the proposed Si micropyramidal substrate enhanced the responsivity nearly two times, compared with that of the Sb2Se3 deposited on a flat Si reference sample and a glass/Sb2Se3 sample at 1064 nm (power density = 15 mW/cm2). More interestingly, the micropyramidal silicon-based device worked at 0 V bias, paving a path for self-bias devices. The highest specific detectivity of 2.25 × 1015 Jones was achieved at 15 mW/cm2 power density at a bias voltage of 0.5 V. It is demonstrated that the enhanced responsivity was closely linked with field enhancement due to the Kretschmann configuration of Si pyramids, which acts as hot spots for Si/Sb2Se3 junction. A high responsivity of 47.8 A W-1 proved it suitable for scalable and cost-effective plasmonic-based NIR photodetectors.

4.
Nanomaterials (Basel) ; 13(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36986029

RESUMEN

As a promising solar absorber material, antimony selenide (Sb2Se3) has gained popularity. However, a lack of knowledge regarding material and device physics has slowed the rapid growth of Sb2Se3-based devices. This study compares the experimental and computational analysis of the photovoltaic performance of Sb2Se3-/CdS-based solar cells. We construct a specific device that may be produced in any lab using the thermal evaporation technique. Experimentally, efficiency is improved from 0.96% to 1.36% by varying the absorber's thickness. Experimental information on Sb2Se3, such as the band gap and thickness, is used in the simulation to check the performance of the device after the optimization of various other parameters, including the series and shunt resistance, and a theoretical maximum efficiency of 4.42% is achieved. Further, the device's efficiency is improved to 11.27% by optimizing the various parameters of the active layer. It thus is demonstrated that the band gap and thickness of active layers strongly affect the overall performance of a photovoltaic device.

5.
ACS Omega ; 8(1): 1632-1642, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36643481

RESUMEN

In this work, a new wide-band-gap n-type buffer layer, ZnSe, has been proposed and investigated for an antimony selenide (Sb2Se3)-based thin-film solar cell. The study aims to boost the Sb2Se3-based solar cell's performance by incorporating a cheap, widely accessible ZnSe buffer layer into the solar cell structure as a replacement for the CdS layer. Solar Cell Capacitance Simulator in One Dimension (SCAPS-1D) simulation software is used to thoroughly analyze the photovoltaic parameters of the heterojunction structure ZnSe/Sb2Se3. It includes open circuit voltage (V OC), short-circuit current density (J SC), fill factor (FF), power conversion efficiency (PCE), and external quantum efficiency (EQE). The absorber layer (Sb2Se3) thickness is adjusted from 0.5 to 3.0 µm to perfect the device. In addition, the influence of cell resistances, radiative recombination coefficient, acceptor and donor defect concentration in the Sb2Se3 layer, and interface defects of the ZnSe/Sb2Se3 layer on overall device performance are investigated. The ZnSe buffer layer and the Sb2Se3 absorber layer are designed to have optimal thicknesses of 100 nm and 1.5 µm, respectively. The proposed device's efficiency with optimized parameters is calculated to be 24%. According to the simulation results, it is possible to build Sb2Se3-based thin-film solar devices at a low cost and with high efficiency by incorporating ZnSe as an electron transport layer.

6.
Heliyon ; 8(8): e10013, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35942281

RESUMEN

Developing low-cost and safe energy storage devices is the primary goal of every country to make a carbon-neutral atmosphere by ∼2050. Batteries and supercapacitors are the backbones of future sustainable energy sources for electrical vehicles (EVs), smart electronic devices, electricity supply to off-grid regions, etc. Hence, these battery-dependent devices are substantially gaining the market. Although lithium-ion batteries account for powering most of these devices, lithium availability and price pose a severe problem since lithium resources are not abundant in nature. Thus, alternative research on sodium-ion or other multi-charged cations (Al3+/Mg2+/Ca2+/K+) based energy storage devices is needed to substitute lithium-ion batteries. India and many other countries have sodium in abundance. Sodium also has potential in designing and developing efficient charge storage devices. This review article discusses the status of sodium-ion battery research activities, cost, market analysis, and future strategies of the Indian government or private bodies, industries, and research institutes of India.

7.
ACS Appl Mater Interfaces ; 14(13): 15381-15390, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35344324

RESUMEN

Many toxic gases are mixed into the atmosphere because of increased air pollution. An efficient gas sensor is required to detect these poisonous gases with its ultrasensitive ability. We employed the thermal evaporation method to deposit an n-SnSe2/p-SnO/n-SnSe heterojunction and observed a temperature-dependent n-p-n switching NO2 gas sensor with high selectivity working at room temperature (RT). The structural and morphological properties of the material were studied using the characterization techniques such as XRD, SEM, Raman spectroscopy, XPS, and HRTEM, respectively. At RT, the device response was 256% for 5 ppm NO2. The response/recovery times were 34 s/272 s, respectively. The calculated limit of detection (LOD) was ∼115 ppb with a 38% response. The device response was better with NO2 gas than with SO2, NO, H2S, CO, H2, and NH3. The mechanism of temperature-dependent n-p-n switching, fast response, recovery, and selective detection of NO2 at RT has been discussed on the basis of physisorption and charge transfer. Thus, this work will add a new dimension to 2D materials as selective gas detectors at room temperature.

8.
J Nanosci Nanotechnol ; 21(9): 4779-4785, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33691866

RESUMEN

Air pollution is a big concern as it causes harm to human health as well as environment. NO2 can cause several respiratory diseases even in low concentration and therefore an efficient sensor for detecting NO2 at room temperature has become one of the priorities of the scientific community. Although two dimensional (2D) materials (MoS2 etc.) have shown potential for NO2 sensing at lower temperatures, but these have poor desorption kinetics. However, these limitations posed by slow desorption can be overcome, if a material in the form of a p-n junction can be suitably employed. In this work, ~150 nm thick SnSe2 thin film has been deposited by thermally evaporating in-house made SnSe2 powder. The film has been studied for its morphological, structural and gas sensing applications. The morphology of the film showed that the film consists of interconnected nanostructures. Detailed Raman studies further revealed that SnSe2 film had 31% SnSe. The SnSe-SnSe2 nanostructured sensor showed a response of ~112% towards 5 ppm NO2 at room temperature (30 °C). The response and recovery times were ~15 seconds and 10 seconds, respectively. Limit of detection for NO2 was in sub-parts per million (sub-ppm) range. The device demonstrated a better response towards NO2 compared to NH3, CH4, and H2. The mechanism of room temperature fast response, recovery and selective detection of NO2 independent of humidity conditions has been discussed based on physisorption, charge transfer, and formation of SnSe-SnSe2 (p-n) nano-junctions. Depositing a nanostructured film consisting of nano-junctions using an industrially viable thermal evaporation technique for sensing a very low concentration of NO2 is the novelty of this work.


Asunto(s)
Nanoestructuras , Dióxido de Nitrógeno , Humanos , Temperatura
9.
J Nanosci Nanotechnol ; 21(9): 4916-4920, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33691890

RESUMEN

In order to have a check and balance of the toxic gases in the environment, various kinds of sensors are currently being researched upon. As many of the toxic gases are also inflammable, therefore, there is a constant search for materials which can detect the gases at lower temperatures. Also, it is important that the sensor is selective for a particular gas. To meet such requirements, nanos-tructured materials are extensively being explored for such gas sensing applications, due to their large effective surface area. And, in order to further improve the gas sensing properties, metal catalysts are deposited over such nanomaterials. The smaller sized nanoparticles show better catalytic activity due to its effective larger surface area per unit volume. Depositing bimetallic materials is thus advantageous, since it can reduce the size of nanoparticles produced. In this work, ~7 nm thick Au/Pd thin film was sputter-coated over SnSe2 nanostructured thin films. SnSe2 thin film were deposited by thermally evaporating SnSe2 powder. The materials were characterized for their structural, morphological and gas sensing properties. The ambient temperature response for 5 parts per million (ppm) NO2 gas was measured to be 117%, with the response and recovery times being 10 and 19 seconds, respectively. The performance of the sensor improved with increase in the gas concentration and for 10 ppm gas, the recorded response was 137%, with the corresponding response and recovery times being 9 and 8 seconds, respectively. The limit of detection was 655 parts per billion (ppb). The mechanism of ambient temperature high response and low response/recovery times have been discussed based on physisorption, charge transfer, Au/Pd decoration and SnSe-SnSe2 based p-n junction. In addition, an important aspect of this work worth pointing out is the deposition of a thin film consisting of nanostructured network using an industrially viable thermal evaporation method. Thus, this work opens a new dimension for 2D materials that can be used for selective gas detection at ambient temperature.


Asunto(s)
Nanopartículas , Nanoestructuras , Catálisis , Gases , Dióxido de Nitrógeno
10.
RSC Adv ; 11(12): 6477-6503, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35423185

RESUMEN

SnSe/SnSe2 is a promising versatile material with applications in various fields like solar cells, photodetectors, memory devices, lithium and sodium-ion batteries, gas sensing, photocatalysis, supercapacitors, topological insulators, resistive switching devices due to its optimal band gap. In this review, all possible applications of SnSe/SnSe2 have been summarized. Some of the basic properties, as well as synthesis techniques have also been outlined. This review will help the researcher to understand the properties and possible applications of tin selenide-based materials. Thus, this will help in advancing the field of tin selenide-based materials for next generation technology.

11.
J Nanosci Nanotechnol ; 20(6): 3620-3621, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31748060
12.
J Nanosci Nanotechnol ; 20(6): 3802-3808, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31748079

RESUMEN

Ternary bismuth halides are interesting functional materials closely related to Pb halide perovskite photovoltaic material, and are widely sought after due to reduced toxicity of Bi compared to Pb. There are several reports on synthesis of Cs3Bi2Br9 nanocrystals (NCs) due to its being relatively stable compared to lead perovskite. Cs3Bi2Br9 nanocrystals have been synthesised using benzoyl bromide as an precursor using hot injection process at two different temperatures of 120 °C and 160 °C. Samples have been characterized for its structural, optical, microstructural and luminescent properties using X-ray diffraction, (XRD) UV-Vis spectroscopy, high resolution transmission electron microscopy and photoluminescent spectroscopy. XRD showed formation of Cs3Bi2Br9 phase with mono-crystalline structure. UV-Vis showed two types of band gap in the visible region which shows that the material can be used for photovoltaic applications. HRTEM confined the particles to be composed of nanocrystals with ˜5 nm particles in the samples grown at 120 °C and it the particles joined together yield various structures composed of nanoparticles. The time resolved photoluminescence shows average life times of 3.067 ns and 4.761 ns for samples grown at two different temperatures. To the best of our knowledge, this is the first report where benzoyl halide has been used as alternative precursor for the synthesis of lead free double perovskite Cs3Bi2Br9 nanocrystals which have many applications.

13.
J Nanosci Nanotechnol ; 20(6): 3909-3912, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31748094

RESUMEN

In this study, we present a process to deposit cadmium sulfide (CdS) thin film on glass substrate using in-house made CdS sputter target deposited by RF (radio frequency) magnetron sputtering. The bandgap of CdS film was about 2.4 eV estimated using tauc plot. Structural analysis was done using XRD and highest peak is at (101) and two other small peaks at (100) and (110) confirm CdS phase. Raman analysis was done for further confirmation of phases present in CdS film where peaks at 299.97 cm-1 and 599.8 cm-1 showed phase pure CdS film. The sputtering method used for CdS thin film preparation is an industrially viable technique and can be used for in line mass production.

14.
J Nanosci Nanotechnol ; 20(6): 3925-3928, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31748097

RESUMEN

CZTS is a compound semiconductor made from elements which are plainly available and nonpoisonous having favorable optoelectronic properties for thin film solar cell (TFSC) applications. In this study, Cu-poor CZTS thin film was fabricated on soda lime glass (SLG)/Mo-deposited substrate using cosputtering followed by post sulfurization in H2S atmosphere. Local electrical transport study was carried out by using conductive atomic force microscopy (C-AFM) for small bias voltage (100 mV). Here we observed that most of the dark current (Idark) flow through grain boundaries (GBs) than grain interiors. The positive high current about 3.4 nA and sharp C-AFM signal at the GBs, dips to the zero (0) value at the grain interior. Local surface potential (Vsurface) study was carried out using kelvin probe force microscopy (KPFM), which showed that the positive Vsurface potential about 175 mV in the vicinity of GBs in a Cu-poor CZTS sample. On the basis of these results we inferred a potential landscape (VL) around the GBs. All result shows that due to variation in elemental composition which creates Cu-deficit or CuZn anti site defects at GBs, leads reduced effective band gap (Eeff) than the bulk towards grain inner to GBs.[-2pt].

15.
ACS Appl Mater Interfaces ; 11(51): 47830-47836, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31441632

RESUMEN

Compositional tailoring enables fine-tuning of thermoelectric (TE) transport parameters by synergistic modulation of electronic and vibrational properties. In the present work, the aspects of compositionally tailored defects have been explored in ZrNiSn-based half-Heusler (HH) TE materials to achieve high TE performance and cost effectiveness in n-type Hf-free HH alloys. In off-stoichiometric Ni-rich ZrNi1+xSn alloys in a low Ni doping limit (x < 0.1), excess Ni induces defects (Ni/vacancy antisite + interstitials), which tend to cause band structure modification. In addition, the structural similarity of HH and full-Heusler (FH) compounds and formation energetics lead to an intrinsic phase segregation of FH nanoscale precipitates that are coherently dispersed within the ZrNiSn HH matrix as nanoclusters. A consonance was achieved experimentally between these two competing mechanisms for optimal HH composition having both FH precipitates and Ni/vacancy antisite defects in the HH matrix by elevating the sintering temperature up to the solubility limit range of the ZrNiSn system. Defect-mediated optimization of electrical and thermal transport via carrier concentration tuning, energy filtering, and possibly all scale-hierarchical architecture resulted in a maximum ZT ≈ 1.1 at 873 K for the optimized ZrNi1.03Sn composition. Our findings highlight the realistic prospect of enhancing TE performance via compositional engineering approach for wide applications of TE.

16.
J Colloid Interface Sci ; 554: 668-673, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31351337

RESUMEN

Methylammonium lead bromide (CH3NH3PbBr3) colloidal quantum dots (QDs) exhibit strong green photoluminescence (PL) with high photoluminescence quantum yield (PLQY) making it valuable for various optoelectronic applications. Under the influence of polar gaseous molecules, hybrid halide perovskites show changes in its structural and electrical properties. We, for the first time, have investigated the influence of NH3 gas molecules on the optical properties of CH3NH3PbBr3 colloidal QDs. The investigations carried out under a controlled environment reveal that even the presence of 37 ppm of ammonia (NH3) gas molecules causes a significant reduction in the PL intensity of CH3NH3PbBr3 colloidal QDs. The reduction rate of PL intensity can be tuned with the concentration of NH3 gas molecules. We propose that the decrease in PL intensity is because of the formation of a non-luminescent NH4PbBr3 phase under the presence of NH3 gas molecules. Further, the non-luminescent NH4PbBr3 retransformed into luminescent CH3NH3PbBr3 on the introduction of methylamine (CH3NH2) gas molecules. This reversible alternation in PL properties enables us to demonstrate its application for (NH3) gas sensing. The advantage of using CH3NH3PbBr3 colloidal QDs for luminescence-based sensing is that its green emission is visible with the naked eye even under daylight, which is easy to detect.

17.
Talanta ; 144: 745-54, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26452886

RESUMEN

The present work proposes partially reduced graphene oxide-gold nanorods supported by chitosan (CH-prGO-AuNRs) as a potential bioelectrode material for enhanced glucose sensing. Developed on ITO substrate by immobilizing glucose oxidase on CH-prGO-AuNRs composite, these CH-prGO-AuNRs/ITO bioelectrodes demonstrate high sensitivity of 3.2 µA/(mg/dL)/cm(2) and linear range of 25-200 mg/dL with an ability to detect as low as 14.5 mg/dL. Further, these CH-prGO-AuNRs/ITO based electrodes attest synergistiacally enhanced sensing properties when compared to simple graphene oxide based CH-GO/ITO electrode. This is evident from one order higher electron transfer rate constant (Ks) value in case of CH-prGO-AuNRs modified electrode (12.4×10(-2) cm/s), in contrast to CH-GO/ITO electrode (6×10(-3) cm/s). Additionally, very low Km value [15.4 mg/dL(0.85 mM)] ensures better binding affinity of enzyme to substrate which is desirable for good biosensor stability and resistance to environmental interferences. Hence, with better loading capacity, kinetics and stability, the proposed CH-prGO-AuNRs composite shows tremendous potential to detect several bio-analytes in the coming future.


Asunto(s)
Técnicas Biosensibles/métodos , Oro/química , Grafito/química , Óxidos/química , Técnicas Biosensibles/instrumentación , Quitosano/química , Electroquímica , Electrodos , Glucosa/análisis , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Nanotubos/química , Oxidación-Reducción , Compuestos de Estaño/química
18.
Beilstein J Nanotechnol ; 5: 1864-72, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25383298

RESUMEN

We report the synthesis of Pt nanoparticles and their burrowing into silicon upon irradiation of a Pt-Si thin film with medium-energy neon ions at constant fluence (1.0 × 10(17) ions/cm(2)). Several values of medium-energy neon ions were chosen in order to vary the ratio of the electronic energy loss to the nuclear energy loss (S e/S n) from 1 to 10. The irradiated films were characterized using Rutherford backscattering spectroscopy (RBS), atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). A TEM image of a cross section of the film irradiated with S e/S n = 1 shows ≈5 nm Pt NPs were buried up to ≈240 nm into the silicon. No silicide phase was detected in the XRD pattern of the film irradiated at the highest value of S e/S n. The synergistic effect of the energy losses of the ion beam (molten zones are produced by S e, and sputtering and local defects are produced by S n) leading to the synthesis and burrowing of Pt NPs is evidenced. The Pt NP synthesis mechanism and their burrowing into the silicon is discussed in detail.

19.
J Nanosci Nanotechnol ; 14(7): 4995-5001, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24757972

RESUMEN

In the present study, CdPbS composite has been synthesized in the P3HT matrix in a single step. The synthesis has been carried out at a temperature of 120 degrees C by the decomposition of xanthate compound in the polymer matrix. This synthesis method helps in proper distribution of nanoparticles in the polymer matrix. The synthesized materials were characterized using UV-Vis spectroscopy, X-ray diffraction, transmission electron microcopy, photoluminescence (PL) and time resolved florescence spectroscopy. The P3HT/CdPbS nanoparticle composite can absorb photon in the range of 0.7 eV to 2.7 eV and a charge transfer between CdPbS and P3HT has been observed. It has been proposed that this composite may increase both the Voc as well as Jsc by better utilization of solar spectrum and increased charge transfer.

20.
Nanoscale ; 5(10): 4330-6, 2013 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-23563991

RESUMEN

Organic conductive polymers are at the forefront of materials science research because of their diverse applications built around their interesting and unique properties. This work reports for the first time a correlation between the structural, electrical, and electromagnetic properties of polyaniline (PANI)-tetragonal BaTiO3 (TBT) nanocomposites prepared by in-situ emulsion polymerization. XRD studies and HRTEM micrographs of these nanocomposites clearly revealed the incorporation of TBT nanoparticles in the conducting PANI matrix. EPR and XPS measurements reveal that increase in loading level of BaTiO3 results in a reduction of the doping level of PANI. The Ku-Band (12.4-18 GHz) network analysis of these composites shows exceptional microwave shielding response with absorption dominated total shielding effectiveness (SET) value of -71.5 dB (blockage of more than 99.99999% of incident radiation) which is the highest value reported in the literature. Such a high attenuation level, which critically depends on the fraction of BaTiO3 is attributed to optimized dielectric and electrical attributes. This demonstrates the possibility of using these materials in stealth technology and for making futuristic radar absorbing materials (RAMs).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...