Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Braz J Microbiol ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750346

RESUMEN

The overwhelming use of PET plastic in various day-to-day activities led to the voluminous increase in PET waste and growing environmental hazards. A plethora of methods have been used that are associated with secondary pollutants. Therefore, microbial degradation of PET provides a sustainable approach due to its versatile metabolic diversity and capacity. The present work highlights the cutinase enzyme's role in PET degradation. This study focuses on the bacterial cutinases homologs screened from 43 reported phylum of bacteria. The reported bacterial cutinases for plastic degradation have been chosen as reference sequences, and 917 sequences have shown homology across the bacterial phyla. The dienelactone hydrolase (DLH) domain was identified for attaining specificity towards PET binding in 196 of 917 sequences. Various computational tools have been used for the physicochemical characterization of 196 sequences. The analysis revealed that most selected sequences are hydrophilic, extracellular, and thermally stable. Based on this analysis, 17 sequences have been further pursued for three-dimensional structure prediction and validation. The molecular docking studies of 17 selected sequences revealed efficient PET binding with the three sequences derived from the phylum Bacteroidota, the lowest binding energy of -5.9 kcal/mol, Armatimonadota, and Nitrososphaerota with -5.8 kcal/mol. The two enzyme sequences retrieved from the phylum Bacteroidota and Armatimonadota are metagenomically derived. Therefore, the present studies concluded that there is a high probability of finding cutinase homologs in various environmental resources that can be further explored for PET degradation.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37468775

RESUMEN

Present investigation demonstrates the development and characterization of strontium titanate (SrTiO3) doped biochar nanohybrid photocatalysts. Biochar nanohybrid was synthesized using an ultrasonic-assisted dispersion technique, which involved dispersing SrTiO3 nanoparticles into activated biochar at a weight ratio of 1:2 (w/w) under ambient conditions. The development of the biochar nanohybrid was verified through a comprehensive analysis of their spectral, microstructural, thermal, electrical, and electrochemical properties. The scanning electron microscopy analysis reveals a surface-associated multiphase morphology of the biochar nanohybrid, attributed to the uniform distribution of SrTiO3 within the activated biochar matrix. Biochar nanohybrid exhibited a reduced optical band gap of 2.77 eV, accompanied by a crystallite size of 32.45. Thermogravimetric analysis revealed the thermal stability of the biochar nanohybrid, as evidenced by a char residue of 70.83% at 1000 °C. The working electrodes derived from biochar nanohybrid have exhibited ohmic behavior and displayed a significantly enhanced DC conductivity (mS/cm) of 1.13, surpassing that of activated biochar (0.53) and SrTiO3 (0.62) at 100 V. The developed biochar nanohybrid were employed for the degradation of congo red dye by exposing the dye solution to photocatalytic plates. These photocatalytic plates were prepared by coating biochar nanohybrid onto glass plates using epoxy-based reactive binders for secure binding. The photodegradation of congo red was evaluated through cyclic voltammetric analysis in a 0.1 M KCl solution at pH 8.0, resulting in an impressive 99.95% photocatalytic efficiency in degrading a congo red solution (50 mg/L). This study presents a novel approach for the fabrication of biochar nanohybrid-derived photocatalytic plates, offering high photocatalytic efficiency for the degradation of congo red dye.

3.
Chemosphere ; 319: 138005, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36731660

RESUMEN

The inevitable need for waste valorisation and management has revolutionized the way in which the waste is visualised as a potential biorefinery for various product development rather than offensive trash. Biowaste has emerged as a potential feedstock to produce several value-added products. Bioenergy generation is one of the potential applications originating from the valorisation of biowaste. Bioenergy production requires analysis and optimization of various parameters such as biowaste composition and conversion potential to develop innovative and sustainable technologies for most effective utilization of biowaste with enhanced bioenergy production. In this context, feedstocks, such as food, agriculture, beverage, and municipal solid waste act as promising resources to produce renewable energy. Similarly, the concept of microbial fuel cells employing biowaste has clearly gained research focus in the past few decades. Despite of these potential benefits, the area of bioenergy generation still is in infancy and requires more interdisciplinary research to be sustainable alternatives. This review is aimed at analysing the bioconversion potential of biowaste to renewable energy. The possibility of valorising underutilized biowaste substrates is elaborately presented. In addition, the application and efficiency of microbial fuel cells in utilizing biowaste are described in detail taking into consideration of its great scope. Furthermore, the review addresses the significance bioreactor development for energy production along with major challenges and future prospects in bioenergy production. Based on this review it can be concluded that bioenergy production utilizing biowaste can clearly open new avenues in the field of waste valorisation and energy research. Systematic and strategic developments considering the techno economic feasibilities of this excellent energy generation process will make them a true sustainable alternative for conventional energy sources.


Asunto(s)
Residuos de Alimentos , Residuos Sólidos , Residuos Sólidos/análisis , Bioingeniería , Fuentes Generadoras de Energía , Reactores Biológicos , Biocombustibles/análisis
4.
Int J Biol Macromol ; 234: 123733, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801274

RESUMEN

The exponential increase in the use and careless discard of synthetic plastics has created an alarming concern over the environmental health due to the detrimental effects of petroleum based synthetic polymeric compounds. Piling up of these plastic commodities on various ecological niches and entry of their fragmented parts into soil and water has clearly affected the quality of these ecosystems in the past few decades. Among the many constructive strategies developed to tackle this global issue, use of biopolymers like polyhydroxyalkanoates as sustainable alternatives for synthetic plastics has gained momentum. Despite their excellent material properties and significant biodegradability, polyhydroxyalkanoates still fails to compete with their synthetic counterparts majorly due to the high cost associated with their production and purification thereby limiting their commercialization. Usage of renewable feedstocks as substrates for polyhydroxyalkanoates production has been the thrust area of research to attain the sustainability tag. This review work attempts to provide insights about the recent developments in the production of polyhydroxyalkanoates using renewable feedstock along with various pretreatment methods used for substrate preparation for polyhydroxyalkanoates production. Further, the application of blends based on polyhydroxyalkanoates, and the challenges associated with the waste valorization based polyhydroxyalkanoates production strategy is elaborated in this review work.


Asunto(s)
Petróleo , Polihidroxialcanoatos , Ecosistema , Biopolímeros/química , Plásticos
5.
Probiotics Antimicrob Proteins ; 14(3): 426-448, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34806151

RESUMEN

The health catastrophe originated by COVID-19 pandemic construed profound impact on a global scale. However, a plethora of research studies corroborated convincing evidence conferring severity of infection of SARS-CoV-2 with the aberrant gut microbiome that strongly speculated its importance for development of novel therapeutic modalities. The intense exploration of probiotics has been envisaged to promote the healthy growth of the host, and restore intestinal microecological balance through various metabolic and physiological processes. The demystifying effect of probiotics cannot be defied, but there exists a strong skepticism related to their safety and efficacy. Therefore, molecular signature of probiotics termed as "postbiotics" are of paramount importance and there is continuous surge of utilizing postbiotics for enhancing health benefits, but little is explicit about their antiviral effects. Therefore, it is worth considering their prospective role in post-COVID regime that pave the way for exploring the pastoral vistas of postbiotics. Based on previous research investigations, the present article advocates prospective role of postbiotics in alleviating the health burden of viral infections, especially SARS-CoV-2. The article also posits current challenges and proposes a futuristic model describing the concept of "precision postbiotics" for effective therapeutic and preventive interventions that can be used for management of this deadly disease.


Asunto(s)
COVID-19 , Probióticos , Humanos , Salud Mental , Pandemias , Prebióticos , Probióticos/metabolismo , Probióticos/uso terapéutico , Estudios Prospectivos , SARS-CoV-2
6.
Endocr Regul ; 51(4): 193-204, 2017 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-29232193

RESUMEN

OBJECTIVE: Testosterone depletion induces increased germ cell apoptosis in testes. However, limited studies exist on genes that regulate the germ cell apoptosis. Granzymes (GZM) are serine proteases that induce apoptosis in various tissues. Multiple granzymes, including GZMA, GZMB and GZMN, are present in testes. Th us, we investigated which granzyme may be testosterone responsive and possibly may have a role in germ cell apoptosis aft er testosterone depletion. METHODS: Ethylene dimethane sulfonate (EDS), a toxicant that selectively ablates the Leydig cells, was injected into rats to withdraw the testosterone. The testosterone depletion effects after 7 days post-EDS were verified by replacing the testosterone exogenously into EDS-treated rats. Serum or testicular testosterone was measured by radioimmunoassay. Using qPCR, mRNAs of granzyme variants in testes were quantified. The germ cell apoptosis was identified by TUNEL assay and the localization of GZMK was by immunohistochemistry. RESULTS: EDS treatment eliminated the Leydig cells and depleted serum and testicular testosterone. At 7 days post-EDS, testis weights were reduced 18% with increased germ cell apoptosis plus elevation GZMK expression. GZMK was not associated with TUNEL-positive cells, but was localized to stripped cytoplasm of spermatids. In addition, apoptotic round spermatids were observed in the caput epididymis. CONCLUSIONS: GZMK expression in testes is testosterone dependent. GZMK is located adjacent to germ cells in seminiferous tubules and the presence of apoptotic round spermatids in the epididymis suggest its role in the degradation of microtubules in ectoplasmic specializations. Thus, overexpression of GZMK may indirectly regulate germ cell apoptosis by premature release of round spermatids from seminiferous tubule lumen.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Granzimas/metabolismo , Testículo/efectos de los fármacos , Testosterona/farmacología , Animales , Apoptosis/efectos de los fármacos , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/metabolismo , Masculino , Mesilatos , Ratas , Testículo/metabolismo , Testosterona/metabolismo
7.
Front Microbiol ; 8: 674, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28473815

RESUMEN

Basidiomycetous fungi, Ganoderma lucidum MDU-7 and Ganoderma sp. kk-02 secreted multiple laccase isozymes under diverse growth condition. Aromatic compounds and metal salts were also found to regulate the differential expression of laccase isozymes from both the Ganoderma sp. Laccase isozymes induced in the presence of copper from G. lucidum MDU-7 were purified by gel-based (native-PAGE) purification method. The purity of laccase isozymes was checked by zymogram and SDS-PAGE. The SDS-PAGE of purified proteins confirmed the multimeric nature of laccase isozymes. The molecular mass of isozymes was found to be in the range of 40-66 kDa. Further, the purified laccase isozymes and their peptides were confirmed with the help of MALDI-TOF peptide fingerprinting. The biochemical characterization of laccase isozymes viz. Glac L2, Glac L3, Glac L4, and Glac L5 have shown the optimum temperature in the range of 30°-45°C and pH 3.0. The Km values of all the laccase isozymes determined for guaiacol were (96-281 µM), ABTS (15-83 µM) and O-tolidine (78-724 µM). Further, laccase isozymes from G. lucidum whole genome were studied using bioinformatics tools. The molecular modeling and docking of laccase isozymes with different substrates showed a significant binding affinity, which further validates our experimental results. Interestingly, copper induced laccase of 40 U/ml in culture medium was found to significantly induce cotton callogenesis. Interestingly, all the laccase isozymes were found to have an antioxidative role and therefore capable in free radicals scavenging during callogenesis. This is the first detailed study on the biochemical characterization of all the laccase isozymes purified by a gel-based novel method.

8.
Urol Oncol ; 35(3): 92-101, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27890424

RESUMEN

Prostate cancer (CaP) is a leading cause of cancer death and displays a broad range of clinical behavior from relatively indolent to aggressive metastatic disease. Due to the alteration and incomplete characterization of the CaP genomic markers, the quest for novel cellular metabolic regulatory molecules like micro RNA (miRNA) as a biomarker could be considered for the prognosis and treatment of CaP in future. In this article, we review the existing literature pertaining to CaP. Study provides a comprehensive miRNA profile expressed in CaP. Beside the miRNA expressed in the tumor tissue, circulating miRNAs have been found highly stable and are both detectable and quantifiable in a range of accessible bio fluids; therefore, miRNA has the potential to be useful diagnostic, prognostic and predictive biomarker. Along with being an important molecule in modulation of CaP progression, the miRNA have certain limitations such as lack of stable expression of multiple target genes and often disrupt entire signaling networks of cellular metabolic pathways. We conclude that: The alteration of miRNA and their role played in cellular regulatory networks would be the next target of basic research in CaP. The miRNAs identified may be validated and modeled to understand their role in CaP, using bioinformatics. There is an immediate unmet need in the translational approach of identified miRNAs. The characterization of miRNAs involved in CaP is still incomplete: adequate validation studies are required to corroborate current results.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , MicroARNs/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Receptores Androgénicos/metabolismo , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/genética , Carcinogénesis/genética , MicroARN Circulante/análisis , Progresión de la Enfermedad , Humanos , Masculino , MicroARNs/análisis , MicroARNs/genética , Clasificación del Tumor , Pronóstico , Próstata/patología , Antígeno Prostático Específico/sangre , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/terapia , Receptores Androgénicos/genética , Transducción de Señal/genética
9.
J Biosci Bioeng ; 113(1): 1-4, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21956156

RESUMEN

Nanotechnology and biomedical treatments using stem cells are among the latest conduits of biotechnological research. Even more recently, scientists have begun finding ways to mate these two specialties of science. The advent of nanotechnology has paved the way for an explicit understanding of stem cell therapy in vivo and by recapitulation of such in vivo environments in the culture, this technology seems to accommodate a great potential in providing new vistas to stem cell research. Nanotechnology carries in its wake, the development of highly stable, efficient and specific gene delivery systems for both in vitro and in vivo genetic engineering of stem cells, use of nanoscale systems (such as microarrays) for investigation of gene expression in stem cells, creation of dynamic three-dimensional nano-environments for in vitro and in vivo maintenance and differentiation of stem cells and development of extremely sensitive in vivo detection systems to gain insights into the mechanisms of stem cell differentiation and apoptosis in different disease models. The present review presents an overview of the current applications and future prospects for the use of nanotechnology in stem cell biology.


Asunto(s)
Nanotecnología/métodos , Células Madre/citología , Técnicas Biosensibles , Técnicas de Cultivo de Célula , Diferenciación Celular , Proliferación Celular , Técnicas de Transferencia de Gen , Terapia Genética , Humanos
10.
Comb Chem High Throughput Screen ; 14(4): 284-302, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21375501

RESUMEN

Prime concerns with modern developments are attributed to high level undetected but important biological substances or even toxicants cycled often among individual and populations; which in turn agonizes environmental monitoring, trace-gas detection, water treatment facilities, in vivo detection in biological fluids and other accomplishments. For the detection of such analytes, several analytical devices combined with biological component have been designed with a physiochemical detector component. Here, we essentially focus on drug-based potentiometric membrane sensors known as ion selective electrodes (ISEs). The functionality of ion-selective membrane is quite intricate, challenging, and our understanding is yet to be thrived with more interventions. ISEs have applied explications to enormous variety of analytical inquires as well as informative tools for probing host-guest chemistry. However, expansion of ISEs based applications is aimed to improve the system performance, acquiring enhanced understanding of their response mechanism, and finding new chemical or physical configurations mainly for human welfare. The major strength of ISEs is the precised analytical information, assured by using the ion-selective membrane electrodes used successfully for both in vitro and in vivo assays of pharmaceutical products as well as in clinical analyses. In this review, we attempt to provide a brief prologue to the applicability and advantages of potentiometric sensors in the analysis of pharmaceutically active compounds emphasizing their employment at molecular level for in situ selection of biologically important analytes.


Asunto(s)
Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Monitoreo del Ambiente/métodos , Preparaciones Farmacéuticas/análisis , Gases/análisis , Humanos , Electrodos de Iones Selectos , Iones/análisis , Membranas Artificiales , Preparaciones Farmacéuticas/química , Potenciometría/métodos , Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...