Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 16(5): e0250486, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33975330

RESUMEN

Research into the epigenome is of growing importance as a loss of epigenetic control has been implicated in the development of neurodegenerative diseases. Previous studies have implicated aberrant DNA and histone methylation in multiple sclerosis (MS) disease pathogenesis. We have previously reported that the methyl donor betaine is depleted in MS and is linked to changes in histone H3 trimethylation (H3K4me3) in neurons. We have also shown that betaine increases histone methyltransferase activity by activating chromatin bound betaine homocysteine S-methyltransferase (BHMT). Here, we investigated the role of the BHMT-betaine methylation pathway in oligodendrocytes. Immunocytochemistry in the human MO3.13 cell line, primary rat oligodendrocytes, and tissue from MS postmortem brain confirmed the presence of the BHMT enzyme in the nucleus in oligodendrocytes. BHMT expression is increased 2-fold following oxidative insult, and qRT-PCR demonstrated that betaine can promote an increase in expression of oligodendrocyte maturation genes SOX10 and NKX-2.2 under oxidative conditions. Chromatin fractionation provided evidence of a direct interaction of BHMT on chromatin and co-IP analysis indicates an interaction between BHMT and DNMT3a. Our data show that both histone and DNA methyltransferase activity are increased following betaine administration. Betaine effects were shown to be dependent on BHMT expression following siRNA knockdown of BHMT. This is the first report of BHMT expression in oligodendrocytes and suggests that betaine acts through BHMT to modulate histone and DNA methyltransferase activity on chromatin. These data suggest that methyl donor availability can impact epigenetic changes and maturation in oligodendrocytes.


Asunto(s)
Betaína-Homocisteína S-Metiltransferasa/metabolismo , Betaína/metabolismo , Esclerosis Múltiple/patología , Oligodendroglía/efectos de los fármacos , Animales , Betaína/farmacología , Betaína-Homocisteína S-Metiltransferasa/antagonistas & inhibidores , Betaína-Homocisteína S-Metiltransferasa/genética , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Cromatina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Epigénesis Genética , Expresión Génica/efectos de los fármacos , Histonas/metabolismo , Humanos , Metionina/metabolismo , Metilación , Esclerosis Múltiple/genética , Nitroprusiato/farmacología , Oligodendroglía/citología , Oligodendroglía/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Factores de Transcripción SOXE/metabolismo
2.
Epigenetics ; 15(8): 871-886, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32096676

RESUMEN

Methionine metabolism is dysregulated in multiple sclerosis (MS). The methyl donor betaine is depleted in the MS brain where it is linked to changes in levels of histone H3 trimethylated on lysine 4 (H3K4me3) and mitochondrial impairment. We investigated the effects of replacing this depleted betaine in the cuprizone mouse model of MS. Supplementation with betaine restored epigenetic control and alleviated neurological disability in cuprizone mice. Betaine increased the methylation potential (SAM/SAH ratio), levels of H3K4me3, enhanced neuronal respiration, and prevented axonal damage. We show that the methyl donor betaine and the betaine homocysteine methyltransferase (BHMT) enzyme can act in the nucleus to repair epigenetic control and activate neuroprotective transcriptional programmes. ChIP-seq data suggest that BHMT acts on chromatin to increase the SAM/SAH ratio and histone methyltransferase activity locally to increase H3K4me3 and activate gene expression that supports neuronal energetics. These data suggest that the methyl donor betaine may provide neuroprotection in MS where mitochondrial impairment damages axons and causes disability.


Asunto(s)
Betaína/farmacología , Ensamble y Desensamble de Cromatina , Epigénesis Genética , Mitocondrias/metabolismo , Esclerosis Múltiple/genética , Animales , Betaína-Homocisteína S-Metiltransferasa/metabolismo , Respiración de la Célula , Células Cultivadas , Cuprizona/toxicidad , Código de Histonas , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Esclerosis Múltiple/etiología , Esclerosis Múltiple/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley
3.
PLoS One ; 13(8): e0203057, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30148869

RESUMEN

Multiple sclerosis (MS) is a devastating neurological disease, which is characterized by multifocal demyelinating lesions in the central nervous system. The most abundant myelin lipids are galactosylceramides and their sulfated form, sulfatides, which together account for about 27% of the total dry weight of myelin. In this study we investigated the role of vitamin K in remyelination, by using an animal model for MS, the cuprizone model. Demyelination was induced in C57Bl6/J mice, by feeding them a special diet containing 0.3% cuprizone (w/w) for 6 weeks. After 6 weeks, cuprizone was removed from the diet and mice were allowed to remyelinate for either 1 or 3 weeks, in the absence or presence of vitamin K (i.p. phylloquinone, 2mg, three times per week). Vitamin K enhanced the production of total brain sulfatides, after both 1 week and 3 weeks of remyelination (n = 5, P-values were <0.0001), when compared with the control group. To determine whether or not there is a synergistic effect between vitamins K and D for the production of brain sulfatides, we employed a similar experiment as above. Vitamin K also increased the production of individual brain sulfatides, including d18:1/18:0, d18:1/20:0, d18:1/24:0, and d18:1/24:1 after 3 weeks of remyelination, when compared to the control group. In addition, vitamin D enhanced the production of total brain sulfatides, as well as d18:1/18:0, d18:1/24:0, and d18:1/24:1 sulfatides after 3 weeks of remyelination, but no synergistic effect between vitamins K and D for the production of total brain sulfatides was observed.


Asunto(s)
Encéfalo/efectos de los fármacos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Esclerosis Múltiple/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Sulfoglicoesfingolípidos/metabolismo , Vitamina K/farmacología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Cuprizona , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Galactosilceramidas/farmacología , Masculino , Ratones Endogámicos C57BL , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Remielinización/efectos de los fármacos , Remielinización/fisiología , Porcinos , Vitamina D/farmacología , Vitamina K/metabolismo
4.
Mol Ther ; 26(3): 793-800, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29456021

RESUMEN

Canavan disease, a leukodystrophy caused by loss-of-function ASPA mutations, is characterized by brain dysmyelination, vacuolation, and astrogliosis ("spongiform leukodystrophy"). ASPA encodes aspartoacylase, an oligodendroglial enzyme that cleaves the abundant brain amino acid N-acetyl-L-aspartate (NAA) to L-aspartate and acetate. Aspartoacylase deficiency results in a 50% or greater elevation in brain NAA concentration ([NAAB]). Prior studies showed that homozygous constitutive knockout of Nat8l, the gene encoding the neuronal NAA synthesizing enzyme N-acetyltransferase 8-like, prevents aspartoacylase-deficient mice from developing spongiform leukodystrophy. We now report that brain Nat8l knockdown elicited by intracerebroventricular/intracisternal administration of an adeno-associated viral vector carrying a short hairpin Nat8l inhibitory RNA to neonatal aspartoacylase-deficient AspaNur7/Nur7 mice lowers [NAAB] and suppresses development of spongiform leukodystrophy.


Asunto(s)
Acetiltransferasas/genética , Amidohidrolasas/deficiencia , Enfermedad de Canavan/genética , Enfermedad de Canavan/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Enfermedad de Canavan/patología , Enfermedad de Canavan/fisiopatología , Dependovirus/genética , Modelos Animales de Enfermedad , Expresión Génica , Técnicas de Silenciamiento del Gen , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Ratones , Ratones Noqueados , Actividad Motora , Neuronas/metabolismo , ARN Mensajero/genética , Transducción Genética
5.
J Neurosci ; 37(2): 413-421, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28077719

RESUMEN

Canavan disease is a leukodystrophy caused by aspartoacylase (ASPA) deficiency. The lack of functional ASPA, an enzyme enriched in oligodendroglia that cleaves N-acetyl-l-aspartate (NAA) to acetate and l-aspartic acid, elevates brain NAA and causes "spongiform" vacuolation of superficial brain white matter and neighboring gray matter. In children with Canavan disease, neuroimaging shows early-onset dysmyelination and progressive brain atrophy. Neuron loss has been documented at autopsy in some cases. Prior studies have shown that mice homozygous for the Aspa nonsense mutation Nur7 also develop brain vacuolation. We now report that numbers of cerebral cortical and cerebellar neurons are decreased and that cerebral cortex progressively thins in AspaNur7/Nur7 mice. This neuronal pathology is prevented by constitutive disruption of Nat8l, which encodes the neuronal NAA-synthetic enzyme N-acetyltransferase-8-like. SIGNIFICANCE STATEMENT: This is the first demonstration of cortical and cerebellar neuron depletion and progressive cerebral cortical thinning in an animal model of Canavan disease. Genetic suppression of N-acetyl-l-aspartate (NAA) synthesis, previously shown to block brain vacuolation in aspartoacylase-deficient mice, also prevents neuron loss and cerebral cortical atrophy in these mice. These results suggest that lowering the concentration of NAA in the brains of children with Canavan disease would prevent or slow progression of neurological deficits.


Asunto(s)
Ácido Aspártico/análogos & derivados , Enfermedad de Canavan/metabolismo , Modelos Animales de Enfermedad , Neuronas/metabolismo , Animales , Ácido Aspártico/biosíntesis , Ácido Aspártico/deficiencia , Ácido Aspártico/genética , Enfermedad de Canavan/genética , Enfermedad de Canavan/patología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA