Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Comput Intell Neurosci ; 2022: 5075277, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35942448

RESUMEN

With the continuous development of social networks, Weibo has become an essential platform for people to share their opinions and feelings in daily life. Analysis of users' emotional tendencies can be effectively applied to public opinion control, public opinion surveys, and product recommendations. However, the traditional deep learning algorithm often needs a large amount of data to be retained to obtain a better accuracy when faced with new work tasks. Given this situation, a multiclassification method of microblog negative sentiment based on MAML (model-agnostic metalearning) and BiLSTM (bidirectional extended short-term memory network) is proposed to represent the microblog text word vectorization and the combination of MAML and BiLSTM is constructed. The model of BiLSTM realizes the classification of negative emotions on Weibo and updates the parameters through machine gradient descent; the metalearner in MAML calculates the sum of the losses of multiple pieces of training, performs a second gradient descent, and updates the metalearner parameters. The updated metalearner can quickly iterate when faced with a new Weibo negative sentiment classification task. The experimental results show that compared with the prepopular model, on the Weibo negative sentiment dataset, the precision rate, recall rate, and F1 value are increased by 1.68 percentage points, 2.86 percentage points, and 2.27 percentage points, respectively.


Asunto(s)
Algoritmos , Emociones , Recolección de Datos , Humanos , Opinión Pública
2.
Biomed Res Int ; 2022: 4609625, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35800216

RESUMEN

Breast cancer is the most common cancer in women, and the breast mass recognition model can effectively assist doctors in clinical diagnosis. However, the scarcity of medical image samples makes the recognition model prone to overfitting. A breast mass recognition model integrated with deep pathological information mining is proposed: constructing a sample selection strategy, screening high-quality samples across different mammography image datasets, and dealing with the scarcity of medical image samples from the perspective of data enhancement; mining the pathology contained in limited labeled models from shallow to deep information; and dealing with the shortage of medical image samples from the perspective of feature optimization. The multiview effective region gene optimization (MvERGS) algorithm is designed to refine the original image features, improve the feature discriminate and compress the feature dimension, better match the number of samples, and perform discriminate correlation analysis (DCA) on the advanced new features; in-depth cross-modal correlation between heterogeneous elements, that is, the deep pathological information, can be mined to describe the breast mass lesion area accurately. Based on deep pathological information and traditional classifiers, an efficient breast mass recognition model is trained to complete the classification of mammography images. Experiments show that the key technical indicators of the recognition model, including accuracy and AUC, are better than the mainstream baselines, and the overfitting problem caused by the scarcity of samples is alleviated.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Algoritmos , Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Femenino , Humanos , Mamografía/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA