Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Front Public Health ; 12: 1333222, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38584916

RESUMEN

Purpose: Exposure to radiation is a health concern within and beyond the Earth's atmosphere for aircrew and astronauts in their respective austere environments. The biological effects of radiation exposure from a multiomics standpoint are relatively unexplored and stand to shed light on tailored monitoring and treatment for those in these career fields. To establish a reference variable for genetic damage, biological age seems to be closely associated with the effect of radiation. Following a genetic-based study, this study explores the epigenetic landscape of radiation exposure along with its associative effects on aging processes. Methods: We imported the results of the genetics-based study that was a secondary analysis of five publicly available datasets (noted as Data1). The overlap of these genes with new data involving methylation data from two datasets (noted as Data2) following similar secondary analysis procedures is the basis of this study. We performed the standard statistical analysis on these datasets along with supervised and unsupervised learning to create preranked gene lists used for functional analysis in Ingenuity Pathway Analysis (IPA). Results: There were 664 genes of interest from Data1 and 577 genes from Data2. There were 40 statistically significant methylation probes within 500 base pairs of the gene's transcription start site and 10 probes within 100 base pairs, which are discussed in depth. IPA yielded 21 significant pathways involving metabolism, cellular development, cell death, and diseases. Compared to gold standards for gestational age, we observed relatively low error and standard deviation using newly identified biomarkers. Conclusion: We have identified 17 methylated genes that exhibited particular interest and potential in future studies. This study suggests that there are common trends in oxidative stress, cell development, and metabolism that indicate an association between aging processes and the effects of ionizing radiation exposure.


Asunto(s)
Astronautas , Exposición a la Radiación , Humanos , Atmósfera , Exposición a la Radiación/efectos adversos , Estrés Oxidativo , Envejecimiento/genética
2.
Biology (Basel) ; 13(2)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38392316

RESUMEN

Multi-omics studies have emerged as powerful tools for tailoring individualized responses to various conditions, capitalizing on genome sequencing technologies' increasing affordability and efficiency. This paper delves into the potential of multi-omics in deepening our understanding of biological age, examining the techniques available in light of evolving technology and computational models. The primary objective is to review the relationship between ionizing radiation and biological age, exploring a wide array of functional, physiological, and psychological parameters. This comprehensive review draws upon an extensive range of sources, including peer-reviewed journal articles, government documents, and reputable websites. The literature review spans from fundamental insights into radiation effects to the latest developments in aging research. Ionizing radiation exerts its influence through direct mechanisms, notably single- and double-strand DNA breaks and cross links, along with other critical cellular events. The cumulative impact of DNA damage forms the foundation for the intricate process of natural aging, intersecting with numerous diseases and pivotal biomarkers. Furthermore, there is a resurgence of interest in ionizing radiation research from various organizations and countries, reinvigorating its importance as a key contributor to the study of biological age. Biological age serves as a vital reference point for the monitoring and mitigation of the effects of various stressors, including ionizing radiation. Ionizing radiation emerges as a potent candidate for modeling the separation of biological age from chronological age, offering a promising avenue for tailoring protocols across diverse fields, including the rigorous demands of space exploration.

3.
Cancers (Basel) ; 15(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37190208

RESUMEN

African American (AA) women with breast cancer are more likely to have higher inflammation and a stronger overall immune response, which correlate with poorer outcomes. In this report, we applied the nanostring immune panel to identify differences in inflammatory and immune gene expression by race. We observed a higher expression of multiple cytokines in AA patients compared to EA patients, with high expression of CD47, TGFB1, and NFKB1 associated with the transcriptional repressor Kaiso. To investigate the mechanism associated with this expression pattern, we observed that Kaiso depletion results in decreased expression of CD47, and its ligand SIRPA. Furthermore, Kaiso appears to directly bind to the methylated sequences of the THBS1 promotor and repress gene expression. Similarly, Kaiso depletion attenuated tumor formation in athymic nude mice, and these Kaiso-depleted xenograft tissues showed significantly higher phagocytosis and increased infiltration of M1 macrophages. In vitro validation using MCF7 and THP1 macrophages treated with Kaiso-depleted exosomes showed a reduced expression of immune-related markers (CD47 and SIRPA) and macrophage polarization towards the M1 phenotype compared to MCF7 cells treated with exosomes isolated from high-Kaiso cells. Lastly, analysis of TCGA breast cancer patient data demonstrates that this gene signature is most prominent in the basal-like subtype, which is more frequently observed in AA breast cancer patients.

4.
Front Public Health ; 11: 1161124, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37250098

RESUMEN

Purpose: One possible way to quantify each individual's response or damage from ionizing radiation is to estimate their accelerated biological age following exposure. Since there is currently no definitive way to know if biological age estimations are accurate, we aim to establish a rad-age association using genomics as its foundation. Methods: Two datasets were combined and used to empirically find the age cutoff between young and old patients. With age as both a categorical and continuous variable, two other datasets that included radiation exposure are used to test the interaction between radiation and age. The gene lists are oriented in preranked lists for both pathway and diseases analysis. Finally, these genes are used to evaluate another dataset on the clinical relevance in differentiating lung disease given ethnicity and sex using both pairwise t-tests and linear models. Results: Using 12 well-known genes associated with aging, a threshold of 29-years-old was found to be the difference between young and old patients. The two interaction tests yielded 234 unique genes such that pathway analysis flagged IL-1 signaling and PRPP biosynthesis as significant with high cell proliferation diseases and carcinomas being a common trend. LAPTM4B was the only gene with significant interaction among lung disease, ethnicity, and sex, with fold change greater than two. Conclusion: The results corroborate an initial association between radiation and age, given inflammation and metabolic pathways and multiple genes emphasizing mitochondrial function, oxidation, and histone modification. Being able to tie rad-age genes to lung disease supplements future work for risk assessment following radiation exposure.


Asunto(s)
Enfermedades Pulmonares , Vuelo Espacial , Humanos , Adulto , Diferenciación Celular , Transducción de Señal , Genómica , Proteínas de la Membrana , Proteínas Oncogénicas
5.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36982180

RESUMEN

The human kidney is known to possess renal progenitor cells (RPCs) that can assist in the repair of acute tubular injury. The RPCs are sparsely located as single cells throughout the kidney. We recently generated an immortalized human renal progenitor cell line (HRTPT) that co-expresses PROM1/CD24 and expresses features expected on RPCs. This included the ability to form nephrospheres, differentiate on the surface of Matrigel, and undergo adipogenic, neurogenic, and osteogenic differentiation. These cells were used in the present study to determine how the cells would respond when exposed to nephrotoxin. Inorganic arsenite (iAs) was chosen as the nephrotoxin since the kidney is susceptible to this toxin and there is evidence of its involvement in renal disease. Gene expression profiles when the cells were exposed to iAs for 3, 8, and 10 passages (subcultured at 1:3 ratio) identified a shift from the control unexposed cells. The cells exposed to iAs for eight passages were then referred with growth media containing no iAs and within two passages the cells returned to an epithelial morphology with strong agreement in differential gene expression between control and cells recovered from iAs exposure. Results show within three serial passages of the cells exposed to iAs there was a shift in morphology from an epithelial to a mesenchymal phenotype. EMT was suggested based on an increase in known mesenchymal markers. We found RPCs can undergo EMT when exposed to a nephrotoxin and undergo MET when the agent is removed from the growth media.


Asunto(s)
Arsenitos , Transición Epitelial-Mesenquimal , Humanos , Transición Epitelial-Mesenquimal/genética , Arsenitos/toxicidad , Osteogénesis , Células Madre , Riñón , Células Epiteliales
6.
Cancers (Basel) ; 15(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36672349

RESUMEN

The Schlafen 12 (SLFN12) protein regulates triple-negative breast cancer (TNBC) growth, differentiation, and proliferation. SLFN12 mRNA expression strongly correlates with TNBC patient survival. We sought to explore SLFN12 overexpression effects on in vivo human TNBC tumor xenograft growth and performed RNA-seq on xenografts to investigate related SLFN12 pathways. Stable SLFN12 overexpression reduced tumorigenesis, increased tumor latency, and reduced tumor volume. RNA-seq showed that SLFN12 overexpressing xenografts had higher luminal markers levels, suggesting that TNBC cells switched from an undifferentiated basal phenotype to a more differentiated, less aggressive luminal phenotype. SLFN12-overexpressing xenografts increased less aggressive BC markers, HER2 receptors ERBB2 and EGFR expression, which are not detectable by immunostaining in TNBC. Two cancer progression pathways, the NAD signaling pathway and the superpathway of cholesterol biosynthesis, were downregulated with SLFN12 overexpression. RNA-seq identified gene signatures associated with SLFN12 overexpression. Higher gene signature levels indicated good survival when tested on four independent BC datasets. These signatures behaved differently in African Americans than in Caucasian Americans, indicating a possible biological difference between these races that could contribute to the worse survival observed in African Americans with BC. These results suggest an increased SLFN12 expression modulates TNBC aggressiveness through a gene signature that could offer new treatment targets.

7.
Cells ; 11(20)2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36291149

RESUMEN

BACKGROUND: The intestinal lining renews itself in a programmed fashion that can be affected by adaptation to surgical procedures such as gastric bypass. METHODS: To assess adaptive mechanisms in the human intestine after Roux-en-Y gastric bypass (RYGB), we biopsied proximal jejunum at the anastomotic site during surgery to establish a baseline and endoscopically re-biopsied the same area 6-9 months after bypass for comparison. Laser microdissection was performed on pre- and post-RYGB biopsies to isolate enterocytes for RNA sequencing. RESULTS: RNA sequencing suggested significant decreases in gene expression associated with G2/M DNA damage checkpoint regulation of the cell cycle pathway, and significant increases in gene expression associated with the CDP-diacylglycerol biosynthesis pathway TCA cycle II pathway, and pyrimidine ribonucleotide salvage pathway after RYGB. Since Schlafen 12 (SLFN12) is reported to influence enterocytic differentiation, we stained mucosa for SLFN12 and observed increased SLFN12 immunoreactivity. We investigated SLFN12 overexpression in HIEC-6 and FHs 74 Int intestinal epithelial cells and observed similar increased expression of the following genes that were also increased after RYGB: HES2, CARD9, SLC19A2, FBXW7, STXBP4, SPARCL1, and UTS. CONCLUSIONS: Our data suggest that RYGB promotes SLFN12 protein expression, cellular mechanism and replication pathways, and genes associated with differentiation and restitution (HES2, CARD9, SLC19A2), as well as obesity-related genes (FBXW7, STXBP4, SPARCL1, UTS).


Asunto(s)
Diferenciación Celular , Enterocitos , Derivación Gástrica , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular , Obesidad , Humanos , Citidina Difosfato Diglicéridos/metabolismo , Enterocitos/citología , Enterocitos/metabolismo , Proteína 7 que Contiene Repeticiones F-Box-WD/metabolismo , Expresión Génica , Intestinos , Proteínas de Transporte de Membrana/metabolismo , Obesidad/genética , Obesidad/cirugía , Obesidad/metabolismo , Análisis de Secuencia de ARN , Proteínas de Transporte Vesicular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Diferenciación Celular/genética
8.
JCI Insight ; 7(13)2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35639484

RESUMEN

Women of African ancestry suffer higher rates of breast cancer mortality compared with all other groups in the United States. Though the precise reasons for these disparities remain unclear, many recent studies have implicated a role for differences in tumor biology. Using an epitope-validated antibody against the endoplasmic reticulum-associated E3 ligase, gp78, we show that elevated levels of gp78 in patient breast cancer cells predict poor survival. Moreover, high levels of gp78 are associated with poor outcomes in both ER+ and ER- tumors, and breast cancers expressing elevated amounts of gp78 protein are enriched in gene expression pathways that influence cell cycle, metabolism, receptor-mediated signaling, and cell stress response pathways. In multivariate analysis adjusted for subtype and grade, gp78 protein is an independent predictor of poor outcomes in women of African ancestry. Furthermore, gene expression signatures, derived from patients stratified by gp78 protein expression, are strong predictors of recurrence and pathological complete response in retrospective clinical trial data and share many common features with gene sets previously identified to be overrepresented in breast cancers based on race. These findings implicate a prominent role for gp78 in tumor progression and offer insights into our understanding of racial differences in breast cancer outcomes.


Asunto(s)
Neoplasias de la Mama , Ubiquitina-Proteína Ligasas , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Retículo Endoplásmico/metabolismo , Femenino , Humanos , Estudios Retrospectivos , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo
9.
Oxid Med Cell Longev ; 2022: 3459855, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35039759

RESUMEN

The IARC classified arsenic (As) as "carcinogenic to humans." Despite the health consequences of arsenic exposure, there is no molecular signature available yet that can predict when exposure may lead to the development of disease. To understand the molecular processes underlying arsenic exposure and the risk of disease development, this study investigated the functional relationship between high arsenic exposure and disease risk using gene expression derived from human exposure. In this study, a three step analysis was employed: (1) the gene expression profiles obtained from two diverse arsenic-exposed Asian populations were utilized to identify differentially expressed genes associated with arsenic exposure in human subjects, (2) the gene expression profiles induced by arsenic exposure in four different myeloma cancer cell lines were used to define common genes and pathways altered by arsenic exposure, and (3) the genetic profiles of two publicly available human bladder cancer studies were used to test the significance of the common association of genes, identified in step 1 and step 2, to develop and validate a predictive model of primary bladder cancer risk associated with arsenic exposure. Our analysis shows that arsenic exposure to humans is mainly associated with organismal injury and abnormalities, immunological disease, inflammatory disease, gastrointestinal disease, and increased rates of a wide variety of cancers. In addition, arsenic exerts its toxicity by generating reactive oxygen species (ROS) and increasing ROS production causing the imbalance that leads to cell and tissue damage (oxidative stress). Oxidative stress activates inflammatory pathways leading to transformation of a normal cell to tumor cell specifically; there is significant evidence of the advancing changes in oxidative/nitrative stress during the progression of bladder cancer. Therefore, we examined the relation of differentially expressed genes due to exposure of arsenic in human and bladder cancer and developed a bladder cancer risk prediction model. In this study, integrin-linked kinase (ILK) was one of the most significant pathways identified between both arsenic exposed population which plays a key role in eliciting a protective response to oxidative damage in epidermal cells. On the other hand, several studies showed that arsenic trioxide (ATO) is useful for anticancer therapy although the mechanisms underlying its paradoxical effects are still not well understood. ATO has shown remarkable efficacy for the treatment of multiple myeloma; therefore, it will be helpful to understand the underlying cancer biology by which ATO exerts its inhibitory effect on the myeloma cells. Our study found that MAPK is one of the most active network between arsenic gene and ATO cell line which is involved in indicative of oxidative/nitrosative damage and well associated with the development of bladder cancer. The study identified a unique set of 147 genes associated with arsenic exposure and linked to molecular mechanisms of cancer. The risk prediction model shows the highest prediction ability for recurrent bladder tumors based on a very small subset (NKIRAS2, AKTIP, and HLA-DQA1) of the 147 genes resulting in AUC of 0.94 (95% CI: 0.744-0.995) and 0.75 (95% CI: 0.343-0.933) on training and validation data, respectively.


Asunto(s)
Arsénico/efectos adversos , Transcriptoma/genética , Neoplasias de la Vejiga Urinaria/inducido químicamente , Pueblo Asiatico , Humanos
10.
J Cell Mol Med ; 25(22): 10466-10479, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34626063

RESUMEN

Damage to proximal tubules due to exposure to toxicants can lead to conditions such as acute kidney injury (AKI), chronic kidney disease (CKD) and ultimately end-stage renal failure (ESRF). Studies have shown that kidney proximal epithelial cells can regenerate particularly after acute injury. In the previous study, we utilized an immortalized in vitro model of human renal proximal tubule epithelial cells, RPTEC/TERT1, to isolate HRTPT cell line that co-expresses stem cell markers CD133 and CD24, and HREC24T cell line that expresses only CD24. HRTPT cells showed most of the key characteristics of stem/progenitor cells; however, HREC24T cells did not show any of these characteristics. The goal of this study was to further characterize and understand the global gene expression differences, upregulated pathways and gene interaction using scRNA-seq in HRTPT cells. Affymetrix microarray analysis identified common gene sets and pathways specific to HRTPT and HREC24T cells analysed using DAVID, Reactome and Ingenuity software. Gene sets of HRTPT cells, in comparison with publicly available data set for CD133+ infant kidney, urine-derived renal progenitor cells and human kidney-derived epithelial proximal tubule cells showed substantial similarity in organization and interactions of the apical membrane. Single-cell analysis of HRTPT cells identified unique gene clusters associated with CD133 and the 92 common gene sets from three data sets. In conclusion, the gene expression analysis identified a unique gene set for HRTPT cells and narrowed the co-expressed gene set compared with other human renal-derived cell lines expressing CD133, which may provide deeper understanding in their role as progenitor/stem cells that participate in renal repair.


Asunto(s)
Células Epiteliales/metabolismo , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/fisiología , Regeneración , Factores de Edad , Biomarcadores , Línea Celular , Biología Computacional/métodos , Células Epiteliales/citología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ontología de Genes , Humanos , Inmunofenotipificación , Transducción de Señal , Análisis de la Célula Individual , Células Madre/citología , Células Madre/metabolismo , Transcriptoma
11.
PLoS One ; 16(3): e0248241, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33764985

RESUMEN

Hyperglycemia is one of the major health concern in many parts of the world. One of the serious complications of high glucose levels is diabetic nephropathy. The preliminary microarray study performed on primary human renal tubular epithelial (hRTE) cells exposed to high glucose levels showed a significant downregulation of mTOR as well as its associated genes as well as lysosomal genes. Based on this preliminary data, the expression of various lysosomal genes as well as mTOR and its associated genes were analyzed in hRTE cells exposed to 5.5, 7.5, 11 and 16 mM glucose. The results validated the microarray analysis, which showed a significant decrease in the mRNA as well as protein expression of the selected genes as the concentration of glucose increased. Co-localization of lysosomal marker, LAMP1 with mTOR showed lower expression of mTOR as the glucose concentration increased, suggesting decrease in mTOR activity. Although the mechanism by which glucose affects the regulation of lysosomal genes is not well known, our results suggest that high levels of glucose may lead to decrease in mTOR expression causing the cells to enter an anabolic state with subsequent downregulation of lysosomal genes.


Asunto(s)
Antígeno AC133/análisis , Hiperglucemia/genética , Túbulos Renales/metabolismo , Lisosomas/genética , Serina-Treonina Quinasas TOR/genética , Antígeno AC133/genética , Células Cultivadas , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Glucosa/metabolismo , Humanos , Hiperglucemia/metabolismo , Túbulos Renales/citología , Lisosomas/metabolismo , Células Madre/citología , Células Madre/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
12.
Commun Biol ; 4(1): 150, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33526872

RESUMEN

The use of digital pathology for the histomorphologic profiling of pathological specimens is expanding the precision and specificity of quantitative tissue analysis at an unprecedented scale; thus, enabling the discovery of new and functionally relevant histological features of both predictive and prognostic significance. In this study, we apply quantitative automated image processing and computational methods to profile the subcellular distribution of the multi-functional transcriptional regulator, Kaiso (ZBTB33), in the tumors of a large racially diverse breast cancer cohort from a designated health disparities region in the United States. Multiplex multivariate analysis of the association of Kaiso's subcellular distribution with other breast cancer biomarkers reveals novel functional and predictive linkages between Kaiso and the autophagy-related proteins, LC3A/B, that are associated with features of the tumor immune microenvironment, survival, and race. These findings identify effective modalities of Kaiso biomarker assessment and uncover unanticipated insights into Kaiso's role in breast cancer progression.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Factores de Transcripción/metabolismo , Microambiente Tumoral , Automatización de Laboratorios , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Técnica del Anticuerpo Fluorescente , Regulación Neoplásica de la Expresión Génica , Humanos , Interpretación de Imagen Asistida por Computador , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Pronóstico , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Transducción de Señal , Factores de Tiempo , Análisis de Matrices Tisulares , Factores de Transcripción/genética , Escape del Tumor , Estados Unidos/epidemiología
13.
Sci Adv ; 6(47)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33219026

RESUMEN

Induced pluripotent stem cells (iPSCs) can be derived from differentiated cells, enabling the generation of personalized disease models by differentiating patient-derived iPSCs into disease-relevant cell lines. While genetic variability between different iPSC lines affects differentiation potential, how this variability in somatic cells affects pluripotent potential is less understood. We generated and compared transcriptomic data from 72 dermal fibroblast-iPSC pairs with consistent variation in reprogramming efficiency. By considering equal numbers of samples from self-reported African Americans and White Americans, we identified both ancestry-dependent and ancestry-independent transcripts associated with reprogramming efficiency, suggesting that transcriptomic heterogeneity can substantially affect reprogramming. Moreover, reprogramming efficiency-associated genes are involved in diverse dynamic biological processes, including cancer and wound healing, and are predictive of 5-year breast cancer survival in an independent cohort. Candidate genes may provide insight into mechanisms of ancestry-dependent regulation of cell fate transitions and motivate additional studies for improvement of reprogramming.


Asunto(s)
Fenómenos Biológicos , Células Madre Pluripotentes Inducidas , Diferenciación Celular/genética , Línea Celular , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Transcriptoma
14.
Oncotarget ; 11(39): 3601-3617, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33062196

RESUMEN

Cadmium (Cd2+) is an environmental toxicant and a human carcinogen. Several studies show an association of Cd2+ exposure to the development of breast cancer. Previously, we have transformed the immortalized non-tumorigenic cell line MCF-10A with Cd2+ and have demonstrated that the transformed cells have anchorage independent growth. In a separate study, we showed that transformation of the immortalized urothelial cells with the environmental carcinogen arsenite (As3+) results in an increase in expression of genes associated with the basal subtype of bladder cancer. In this study, we determined if transformation of the MCF-10A cells with Cd2+ would have a similar effect on the expression of basal genes. The results of our study indicate that there is a decrease in expression of genes associated with keratinization and cornification and this gene signature includes the genes associated with the basal subtype of breast cancer. An analysis of human breast cancer databases indicates an increased expression of this gene signature is associated with a positive correlation to patient survival whereas a reduced expression/absence of this gene signature is associated with poor patient survival. Thus, our study suggests that transformation of the MCF-10A cells with Cd2+ produces a decreased basal gene expression profile that correlates to patient outcome.

15.
Cancers (Basel) ; 12(10)2020 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-32987632

RESUMEN

Schlafen 12 (SLFN12) is an intermediate human Schlafen that induces differentiation in enterocytes, prostate, and breast cancer. We hypothesized that SLFN12 influences lung cancer biology. We investigated survival differences in high versus low SLFN12-expressing tumors in two databases. We then adenovirally overexpressed SLFN12 (AdSLFN12) in HCC827, H23, and H1975 cells to model lung adenocarcinoma (LUAD), and in H2170 and HTB-182 cells representing lung squamous cell carcinoma (LUSC). We analyzed proliferation using a colorimetric assay, mRNA expression by RT-qPCR, and protein by Western blot. To further explore the functional relevance of SLFN12, we correlated SLFN12 with seventeen functional oncogenic gene signatures in human tumors. Low tumoral SLFN12 expression predicted worse survival in LUAD patients, but not in LUSC. AdSLFN12 modulated expression of SCGB1A1, SFTPC, HOPX, CK-5, CDH1, and P63 in a complex fashion in these cells. AdSLFN12 reduced proliferation in all LUAD cell lines, but not in LUSC cells. SLFN12 expression inversely correlated with expression of a myc-associated gene signature in LUAD, but not LUSC tumors. SLFN12 overexpression reduced c-myc protein in LUAD cell lines but not in LUSC, by inhibiting c-myc translation. Our results suggest SLFN12 improves prognosis in LUAD in part via a c-myc-dependent slowing of proliferation.

16.
Ecancermedicalscience ; 14: 1019, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32256702

RESUMEN

INTRODUCTION: For limited stage small cell lung cancer (LS-SCLC) where concurrent chemoradiotherapy is inappropriate due to tumour bulk, co-morbidities or performance status, sequential treatment using chemotherapy followed by radiotherapy is the standard of care. The outcomes are not well established; we assessed in a single institution, the survival of these patients, prognostic factors and compared to the limited existing literature. MATERIALS AND METHOD: Retrospective data was collected on all 59 patients diagnosed with LS-SCLC from 2011 to 2016 who received chemotherapy consisting of Carboplatin or Cisplatin + Etoposide followed by thoracic radiotherapy (50 Gy in 25 fractions) +/- prophylactic cranial irradiation (PCI). RESULTS: Median age at diagnosis was 66 years (range 46-90). Patients received a median of four cycles of chemotherapy (range: 1-6) and all the patients completed a full course of radiotherapy with only one patient experiencing grade >2 radiation induced toxicity. With a median follow up of 20.6 months, 45 patients had died with a median survival of 20.6 months. 2-year overall survival (OS) rates were 42%. Age using a cut-off of 65 was prognostic (median OS 25.6 months ≤65 years versus 14.1 months >65 years, p = 0.013) but gender, stage and receipt of PCI were not. CONCLUSIONS: Most of the literature reporting outcome from sequential treatment in LS-SCLC is old and used a variety of radiotherapy regimens. Our data shows inferior outcomes to the gold standard concurrent chemoradiotherapy but support its usage in less fit patients with reasonable outcome observed.

17.
Clin Cancer Res ; 26(8): 1905-1914, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31911546

RESUMEN

PURPOSE: Compared with their European American (EA) counterparts, African American (AA) women are more likely to die from breast cancer in the United States. This disparity is greatest in hormone receptor-positive subtypes. Here we uncover biological factors underlying this disparity by comparing functional expression and prognostic significance of master transcriptional regulators of luminal differentiation. EXPERIMENTAL DESIGN: Data and biospecimens from 262 AA and 293 EA patients diagnosed with breast cancer from 2001 to 2010 at a major medical center were analyzed by IHC for functional biomarkers of luminal differentiation, including estrogen receptor (ESR1) and its pioneer factors, FOXA1 and GATA3. Integrated comparison of protein levels with network-level gene expression analysis uncovered predictive correlations with race and survival. RESULTS: Univariate or multivariate HRs for overall survival, estimated from digital IHC scoring of nuclear antigen, show distinct differences in the magnitude and significance of these biomarkers to predict survival based on race: ESR1 [EA HR = 0.47; 95% confidence interval (CI), 0.31-0.72 and AA HR = 0.77; 95% CI, 0.48-1.18]; FOXA1 (EA HR = 0.38; 95% CI, 0.23-0.63 and AA HR = 0.53; 95% CI, 0.31-0.88), and GATA3 (EA HR = 0.36; 95% CI, 0.23-0.56; AA HR = 0.57; CI, 0.56-1.4). In addition, we identify genes in the downstream regulons of these biomarkers highly correlated with race and survival. CONCLUSIONS: Even within clinically homogeneous tumor groups, regulatory networks that drive mammary luminal differentiation reveal race-specific differences in their association with clinical outcome. Understanding these biomarkers and their downstream regulons will elucidate the intrinsic mechanisms that drive racial disparities in breast cancer survival.


Asunto(s)
Población Negra/genética , Neoplasias de la Mama/mortalidad , Receptor alfa de Estrógeno/metabolismo , Factor de Transcripción GATA3/metabolismo , Regulación Neoplásica de la Expresión Génica , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Población Blanca/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/etnología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino , Disparidades en el Estado de Salud , Humanos , Inmunohistoquímica/métodos , Persona de Mediana Edad , Tasa de Supervivencia , Estados Unidos
18.
J Natl Cancer Inst ; 112(2): 179-190, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31095341

RESUMEN

BACKGROUND: A total of 10%-20% of patients develop long-term toxicity following radiotherapy for prostate cancer. Identification of common genetic variants associated with susceptibility to radiotoxicity might improve risk prediction and inform functional mechanistic studies. METHODS: We conducted an individual patient data meta-analysis of six genome-wide association studies (n = 3871) in men of European ancestry who underwent radiotherapy for prostate cancer. Radiotoxicities (increased urinary frequency, decreased urinary stream, hematuria, rectal bleeding) were graded prospectively. We used grouped relative risk models to test associations with approximately 6 million genotyped or imputed variants (time to first grade 2 or higher toxicity event). Variants with two-sided Pmeta less than 5 × 10-8 were considered statistically significant. Bayesian false discovery probability provided an additional measure of confidence. Statistically significant variants were evaluated in three Japanese cohorts (n = 962). All statistical tests were two-sided. RESULTS: Meta-analysis of the European ancestry cohorts identified three genomic signals: single nucleotide polymorphism rs17055178 with rectal bleeding (Pmeta = 6.2 × 10-10), rs10969913 with decreased urinary stream (Pmeta = 2.9 × 10-10), and rs11122573 with hematuria (Pmeta = 1.8 × 10-8). Fine-scale mapping of these three regions was used to identify another independent signal (rs147121532) associated with hematuria (Pconditional = 4.7 × 10-6). Credible causal variants at these four signals lie in gene-regulatory regions, some modulating expression of nearby genes. Previously identified variants showed consistent associations (rs17599026 with increased urinary frequency, rs7720298 with decreased urinary stream, rs1801516 with overall toxicity) in new cohorts. rs10969913 and rs17599026 had similar effects in the photon-treated Japanese cohorts. CONCLUSIONS: This study increases the understanding of the architecture of common genetic variants affecting radiotoxicity, points to novel radio-pathogenic mechanisms, and develops risk models for testing in clinical studies. Further multinational radiogenomics studies in larger cohorts are worthwhile.

19.
Cell Death Dis ; 10(10): 689, 2019 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-31534138

RESUMEN

The C-terminal binding protein (CtBP) is an NADH-dependent dimeric family of nuclear proteins that scaffold interactions between transcriptional regulators and chromatin-modifying complexes. Its association with poor survival in several cancers implicates CtBP as a promising target for pharmacological intervention. We employed computer-assisted drug design to search for CtBP inhibitors, using quantitative structure-activity relationship (QSAR) modeling and docking. Functional screening of these drugs identified 4 compounds with low toxicity and high water solubility. Micro molar concentrations of these CtBP inhibitors produces significant de-repression of epigenetically silenced pro-epithelial genes, preferentially in the triple-negative breast cancer cell line MDA-MB-231. This epigenetic reprogramming occurs through eviction of CtBP from gene promoters; disrupted recruitment of chromatin-modifying protein complexes containing LSD1, and HDAC1; and re-wiring of activating histone marks at targeted genes. In functional assays, CtBP inhibition disrupts CtBP dimerization, decreases cell migration, abolishes cellular invasion, and improves DNA repair. Combinatorial use of CtBP inhibitors with the LSD1 inhibitor pargyline has synergistic influence. Finally, integrated correlation of gene expression in breast cancer patients with nuclear levels of CtBP1 and LSD1, reveals new potential therapeutic vulnerabilities. These findings implicate a broad role for this class of compounds in strategies for epigenetically targeted therapeutic intervention.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Neoplasias de la Mama/genética , Proteínas de Unión al ADN/genética , Epigénesis Genética/genética , Femenino , Humanos
20.
Cancers (Basel) ; 11(8)2019 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-31362354

RESUMEN

Background: Lung cancer is the most common cause of cancer-related deaths worldwide. Early diagnosis is crucial to increase the curability chance of the patients. Low dose CT screening can reduce lung cancer mortality, but it is associated with several limitations. Metabolomics is a promising technique for cancer diagnosis due to its ability to provide chemical phenotyping data. The intent of our study was to explore metabolomic effects and profiles of lung cancer patients to determine if metabolic perturbations in the SSAT-1/polyamine pathway can distinguish between healthy participants and lung cancer patients as a diagnostic and treatment monitoring tool. Patients and Methods: Plasma samples were collected as part of the SSAT1 Amantadine Cancer Study. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify and quantify metabolite concentrations in lung cancer patient and control samples. Standard statistical analyses were performed to determine whether metabolite concentrations could differentiate between healthy subjects and lung cancer patients, as well as risk prediction modeling applied to determine whether metabolic profiles could provide an indication of cancer progression in later stage patients. Results: A panel consisting of 14 metabolites, which included 6 metabolites in the polyamine pathway, was identified that correctly discriminated lung cancer patients from controls with an area under the curve of 0.97 (95% CI: 0.875-1.0). Conclusion: When used in conjunction with the SSAT-1/polyamine pathway, these metabolites may provide the specificity required for diagnosing lung cancer from other cancer types and could be used as a diagnostic and treatment monitoring tool.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...