Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(16): 7218-7232, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38593245

RESUMEN

Designing highly active and robust earth abundant trifunctional electrocatalysts for energy storage and conversion applications remain an enormous challenge. Herein, we report a trifunctional electrocatalyst (CrCo/CoN4@CNT-5), synthesized at low calcination temperature (550 °C), which consists of Co-N4 single atom and CrCo alloy nanoparticles and exhibits outstanding electrocatalytic performance for the hydrogen evolution reaction, oxygen evolution reaction, and oxygen reduction reaction. The catalyst is able to deliver a current density of 10 mA cm-2 in an alkaline electrolytic cell at a very low cell voltage of ∼1.60 V. When the catalyst is equipped in a liquid rechargeable Zn-air battery, it endowed a high open-circuit voltage with excellent cycling durability and outperformed the commercial Pt/C+IrO2 catalytic system. Furthermore, the Zn-air battery powered self-driven water splitting system is displayed using CrCo/CoN4@CNT-5 as sole trifunctional catalyst, delivering a high H2 evolution rate of 168 µmol h-1. Theoretical calculations reveal synergistic interaction between Co-N4 active sites and CrCo nanoparticles, favoring the Gibbs free energy for H2 evolution. The presence of Cr not only enhances the H2O adsorption and dissociation but also tunes the electronic property of CrCo nanoparticles to provide optimized hydrogen binding capacity to Co-N4 sites, thus giving rise to accelerated H2 evolution kinetics. This work highlights the importance of the presence of small quantity of Cr in enhancing the electrocatalytic activity as well as robustness of single-atom catalyst and suggests the design of the multifunctional robust electrocatalysts for long-term H2 evolution application.

2.
ACS Nano ; 17(19): 19155-19167, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37774140

RESUMEN

Synthesizing dual single-atom catalysts (DSACs) with atomically isolated metal pairs is a challenging task but can be an effective way to enhance the performance for electrochemical oxygen reduction reaction (ORR). Herein, well-defined DSACs of Co-Mn, stabilized in N-doped porous carbon polyhedra (named CoMn/NC), are synthesized using high-temperature pyrolysis of a Co/Mn-doped zeolitic imidazolate framework. The atomically isolated Co-Mn site in CoMn/NC is recognized by combining microscopic as well as spectroscopic techniques. CoMn/NC exhibited excellent ORR activities in alkaline (E1/2 = 0.89 V) as well as in acidic (E1/2 = 0.82 V) electrolytes with long-term durability and enhanced methanol tolerance. Density functional theory (DFT) suggests that the Co-Mn site is efficiently activating the O-O bond via bridging adsorption, decisive for the 4e- oxygen reduction process. Though the Co-Mn sites favor O2 activation via the dissociative ORR mechanism, stronger adsorption of the intermediates in the dissociative path degrades the overall ORR activity. Our DFT studies conclude that the ORR on an Co-Mn site mainly occurs via bridging side-on O2 adsorption following thermodynamically and kinetically favorable associative mechanistic pathways with a lower overpotential and activation barrier. CoMn/NC performed excellently as a cathode in a proton exchange membrane (PEM) fuel cell and rechargeable Zn-air battery with high peak power densities of 970 and 176 mW cm-2, respectively. This work provides the guidelines for the rational design and synthesis of nonprecious DSACs for enhancing the ORR activity as well as the robustness of DSACs and suggests a design of multifunctional robust electrocatalysts for energy storage and conversion devices.

3.
Inorg Chem ; 62(21): 8200-8209, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37196161

RESUMEN

Developing nonprecious metal-based oxygen reduction reaction (ORR) electrocatalysts with superior activity and durability is crucial for commercializing proton-exchange membrane (PEM) fuel cells. Herein, we report a metal-organic framework (MOF)-derived unique N-doped hollow carbon structure (NiCo/hNC), comprising of atomically dispersed single-Ni-atom (NiN4) and small NiCo alloy nanoparticles (NPs), for highly efficient and durable ORR catalysis in both alkaline and acidic electrolytes. Density functional theory (DFT) calculations reveal the strong coupling between NiN4 and NiCo NPs, favoring the direct 4e- transfer ORR process by lengthening the adsorbed O-O bond. Moreover, NiCo/hNC as a cathode electrode in PEM fuel cells delivered a stable performance. Our findings not only furnish the fundamental understanding of the structure-activity relationship but also shed light on designing advanced ORR catalysts.

4.
Nanoscale ; 15(13): 6075-6104, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36928281

RESUMEN

Significant advances in nanoparticle-related research have been made in the past decade, and amelioration of properties is considered of utmost importance for improving nanoparticle bioavailability, specificity, and catalytic performance. Nanoparticle properties can be tuned through in-synthesis and post-synthesis functionalization operations, with thermodynamic and kinetic parameters playing a crucial role. In spite of robust functionalization techniques based on surface chemistry, scalable technologies have not been explored well. The coordination enhancement via surface functionalization through organic/inorganic/biomolecules material has attracted much attention with morphology modification and shape tuning, which are indispensable aspects in the colloidal phase during biomedical applications. It is envisioned that surface amelioration influences the anchoring properties of nano interfaces for the immobilization of functional groups and biomolecules. In this work, various nanostructure and anchoring methodologies have been discussed, aiming to exploit their full potential in precision engineering applications. Simultaneous discussions on emerging characterization strategies for functionalized assemblies have been made to gain insights into functionalization chemistry. An overview of current advances and prospects of functionalized nanoparticles has been presented, with an emphasis on controllable attributes such as size, shape, morphology, functionality, surface features, Debye and Casimir interactions.

5.
Chem Commun (Camb) ; 59(28): 4225-4228, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-36940094

RESUMEN

Closed-loop recyclable and biodegradable aliphatic covalent adaptable networks (CANs) based on dynamic ß-CO thioester linkages that exhibit a service temperature beyond 100 °C are reported. These CANs possessing tensile strength and modulus values of up to 0.3 and 3 MPa, respectively, effectively undergo stress relaxation above 100 °C. The samples exhibit creep resistance ability and low hysteresis loss, and are repeatedly reprocessable at 120 °C. These CANs are depolymerizable to monomers under mild conditions and lose notable mechanical strength (92.4%) and weight (76.5%) within ∼35 days under natural biodegradation conditions.

6.
Bioresour Technol ; 369: 128377, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36423761

RESUMEN

Poultry litter (PL) and rice straw (RS), commonly available waste materials, pose severe threat to environment, if not properly managed. As viable waste treatment method, vermi-transformation of PL into enriched vermimanure was done using RS and cow dung (CD) with different feedstocks (FS) combinations like FS0(CD without earthworm), FS1(CD), FS2(1CD: 1RS), FS3(1CD: 1PL) and FS4(1CD: 1RS: 1PL) for 110 days. Increased growth performance (P < 0.05) of Eisenia fetida, macronutrient levels, and a consistently lower carbon-to-nitrogen ratio (C/N) emphasize the importance of RS and PL in the vermimanuring process. Several analytical techniques have revealed the presence of functional groups, nitrate (NO3-), phosphate (PO43-), and potassium ions (K+) as well as the high porosity of the matured vermimanures. Therefore, using earthworms, the feedstock FS4(1CD: 1RS: 1PL) could be successfully biotransformed into sustainable manure lowering the usage of chemical fertilizers and rice straw burning.


Asunto(s)
Oligoquetos , Oryza , Tigres , Bovinos , Animales , Femenino , Suelo/química , Aves de Corral , Estiércol
7.
Dalton Trans ; 51(47): 17973-17977, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36278796

RESUMEN

Herein, for the first time, a metal-organic framework (MOF) is reported as a catalyst for α-alkylation of ketones with alcohols. Using an encapsulation strategy via nano-confinement of a homogeneous Mn-phenanthroline complex into MOF pores, functionalized branched ketones were selectively produced. Mechanistic investigations and deuterium labelling experiments validated the utilization of the borrowing hydrogen strategy. The formation of extra Lewis acid sites, defects, and pore enhancement during catalysis helped in achieving higher activity and selectivity.

8.
ACS Appl Mater Interfaces ; 11(27): 24659-24667, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31246405

RESUMEN

Lanthanum (La3+)-doped double perovskites Sr2CoMoO6 (Sr2-xLaxCoMoO6, 0.00 ≤ x ≤ 0.03) were synthesized via the citrate-nitrate autocombustion route. The Reitveld refinement analysis of X-ray diffraction reveals the tetragonal symmetry as the main phase with space group I4/m and also confirms the presence of some peaks corresponding to extra phase SrMoO4. The SEM micrograph images reflect that grains are in irregular shape and sizes for all samples. Average grain size gradually decreases with the increase of the SrMoO4 phase. The X-ray photoelectron spectroscopy (XPS) analysis confirms the presence of mixed valence states of Mo5+/Mo6+, Co2+/Co3+, and O-lattice/O-chemisorbed/O-physisorbed species. Coefficient of thermal expansion (CTE) analysis shows that the particular composition Sr1.97La0.03CoMoO6 has the lowest CTE value among the compositions studied. The electrical conductivity of Sr2CoMoO6 is enhanced effectively by doping La at Sr sites. The measured area-specific resistance (ASR) for the composition Sr1.97La0.03CoMoO6 (SLCM03) is found to be appreciably low, ∼0.053 Ohm cm-2 at 800 °C. The obtained highest electrical conductivity with the lowest activation energy and low ASR value for the composition Sr1.97La0.03CoMoO6 encompasses it as a promising candidate for anode material in the intermediate-temperature solid oxide fuel cell (IT-SOFC) application.

9.
Phys Chem Chem Phys ; 21(27): 14701-14712, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31218309

RESUMEN

The paradigm that chemical synthesis reduces the sintering temperature as compared to solid state synthesis seems to be violated in the case of the PrBaCo2O6-δ double perovskite. The sintering temperatures for pure phase samples synthesized through the solid state route (P-SSR) and the auto-combustion route (P-ACR) were found to be 1050 and 1150 °C, respectively. The porous microstructure of P-SSR is suitable for SOFC cathode materials while that of P-ACR is pore free. High-resolution transmission electron microscopy, Raman and scanning tunneling microscopy studies reveal that there is crystal growth on a smooth surface with a preferred orientation. Our results show that this anomalous synthesis behaviour is due to anisotropic surface nucleation growth. Thermodynamically, the higher decomposition temperature in the chemical route is due to stronger electron-phonon coupling and the higher value of change in entropy. The variation in the Co-O-Co bond angle reveals Jahn-Teller vibrational anisotropy in the-b plane leading to the anisotropic synthesis behaviour. This anisotropy is the reason for the violation of the paradigm.

10.
J Nanosci Nanotechnol ; 9(9): 5507-14, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19928254

RESUMEN

In the present work, aligned TiO2 nanotubes have been synthesized by a simple method of electrochemical anodization of high purity, well cleaned, etched and ultrasonicated Ti-sheet (Purity approximately 99.99%) in a fluoride mediated electrolytic media consisting of a solution of 0.14 M NaF and a solution of 0.5 M/1.0 M H3PO4. Studies on the effects of anodization voltage, time and electrolyte concentration on the formation of TiO2 nanotubes have been carried out. The TiO2 nanotube arrays have been synthesized at applied anodization voltages of approximately 10 V and approximately 20 V. The anodization was carried out for 1 hour and 2 hours at each applied voltage. Structural/microstructural characterizations of TiO2 nanotubes have been carried out through scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM images of TiO, nanotubes showed interesting features relating to morphology, the pore size (diameter of the tubes) and the lengths of the tube. TEM investigations revealed that the as synthesized nanotubes are amorphous in nature and on electron beam annealing, these transformed to crystalline phases (rutile and brookite). The optical characterizations through UV-Visible spectroscopy exhibited that the band gap are approximately 3.03 eV and approximately 2.87 eV for tubes synthesized at applied anodization voltages of approximately 10 V and approximately 20 V respectively. A tentative mechanism for the growth of TiO2 nanotube has been put forward.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...