Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 262(Pt 2): 129981, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336316

RESUMEN

The interchange of DNA sequences between genes may occur because of chromosomal rearrangements leading to the formation of chimeric genes. These chimeric genes have been linked to various cancers, accumulated significant interest in recent times. We used paired-end RNA-seq. data of four CRC and one normal sample generated from our previous study. The STAR-Fusion pipeline was utilized to identify the fusion genes unique to CRC. The in-silico identified fusion gene(s) were explored for their diagnostic, prognostic and therapeutic biomarker potential using TCGA-datasets, then validated through PCR and DNA sequencing. Further, cell line-based studies were performed to gain functional insights of the novel fusion transcript CTNND1-RAB6A, which was amplified in one sample. Sequencing revealed that there was a total loss of the CTNND1 gene, whereas RAB6A retained its coding sequence. Further, RAB6A was functionally characterized for its oncogenic potential in HCT116 cell line. RAB6A under-expression was found to be significantly associated with increased cell migration and is proposed to be regulated via the RAB6A-ECR1-Liprin-α axis. We conclude that RAB6A gene may play significant role in CRC oncogenesis, and could be used as a potential biomarker and therapeutic target in future for better management of a subset of CRCs harbouring this fusion.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/metabolismo , Neoplasias del Colon/genética , Células HCT116 , Movimiento Celular/genética , Biomarcadores
2.
Redox Biol ; 65: 102833, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37536085

RESUMEN

Ferroptosis, a genetically and biochemically distinct form of programmed cell death, is characterised by an iron-dependent accumulation of lipid peroxides. Therapy-resistant tumor cells display vulnerability toward ferroptosis. Endoplasmic Reticulum (ER) stress and Unfolded Protein Response (UPR) play a critical role in cancer cells to become therapy resistant. Tweaking the balance of UPR to make cancer cells susceptible to ferroptotic cell death could be an attractive therapeutic strategy. To decipher the emerging contribution of ER stress in the ferroptotic process, we observe that ferroptosis inducer RSL3 promotes UPR (PERK, ATF6, and IRE1α), along with overexpression of cystine-glutamate transporter SLC7A11 (System Xc-). Exploring the role of a particular UPR arm in modulating SLC7A11 expression and subsequent ferroptosis, we notice that PERK is selectively critical in inducing ferroptosis in colorectal carcinoma. PERK inhibition reduces ATF4 expression and recruitment to the promoter of SLC7A11 and results in its downregulation. Loss of PERK function not only primes cancer cells for increased lipid peroxidation but also limits in vivo colorectal tumor growth, demonstrating active signs of ferroptotic cell death in situ. Further, by performing TCGA data mining and using colorectal cancer patient samples, we demonstrate that the expression of PERK and SLC7A11 is positively correlated. Overall, our experimental data indicate that PERK is a negative regulator of ferroptosis and loss of PERK function sensitizes colorectal cancer cells to ferroptosis. Therefore, small molecule PERK inhibitors hold huge promise as novel therapeutics and their potential can be harnessed against the apoptosis-resistant condition.


Asunto(s)
Neoplasias Colorrectales , Ferroptosis , Humanos , Sistema de Transporte de Aminoácidos y+/genética , Neoplasias Colorrectales/genética , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo , Endorribonucleasas/metabolismo , Ferroptosis/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
4.
Infect Disord Drug Targets ; 23(5): e280223214111, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36852815

RESUMEN

In the German towns of Marburg, Frankfurt, and Belgrade in 1967, this single negativestranded RNA virus was initially discovered. The importation of infected grivet monkeys from Uganda is what caused this virus-related sickness. As a result of the early link between viruses and non-human primates, this virus is frequently referred to as vervet monkey sickness. This virus causes Marburg hemorrhagic fever in humans and non-human primates. Human endothelial cells serve as the primary vehicle for replication. According to a 2009 report, the virus was being stored in Egyptian fruit bats (Rousettus aegyptiacus). Body fluids, unprotected sex, broken or injured skin, and other bodily fluids are the main routes of transmission. After the incubation period, symptoms like chills, headaches, myalgia, and stomach pain start to show up. There is no specific medication for such an infection, only hydration therapy and adequate oxygenation are followed. The following diagnostic techniques can be used to confirm the diagnosis: (i) an antibody-capture enzyme linked immunosorbent assay (ELISA); ii) an antigen capture ELISA test; iii) a serum neutralization test; iv) an RT PCR assay; v) electron microscopy; or vi) virus isolation by cell culture. Because MARV is a risk group 4 infection, laboratory staff must take strict precautions (RG-4).


Asunto(s)
COVID-19 , Quirópteros , Marburgvirus , Animales , Humanos , Chlorocebus aethiops , Marburgvirus/genética , SARS-CoV-2 , Células Endoteliales , Primates
5.
Nat Commun ; 13(1): 7344, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36446780

RESUMEN

Triple-Negative Breast Cancer (TNBC) has a poor prognosis and adverse clinical outcomes among all breast cancer subtypes as there is no available targeted therapy. Overexpression of Enhancer of zeste homolog 2 (EZH2) has been shown to correlate with TNBC's poor prognosis, but the contribution of EZH2 catalytic (H3K27me3) versus non-catalytic EZH2 (NC-EZH2) function in TNBC progression remains elusive. We reveal that selective hyper-activation of functional EZH2 (H3K27me3) over NC-EZH2 alters TNBC metastatic landscape and fosters its peritoneal metastasis, particularly splenic. Instead of H3K27me3-mediated repression of gene expression; here, it promotes KRT14 transcription by attenuating binding of repressor SP1 to its promoter. Further, KRT14 loss significantly reduces TNBC migration, invasion, and peritoneal metastasis. Consistently, human TNBC metastasis displays positive correlation between H3K27me3 and KRT14 levels. Finally, EZH2 knockdown or H3K27me3 inhibition by EPZ6438 reduces TNBC peritoneal metastasis. Altogether, our preclinical findings suggest a rationale for targeting TNBC with EZH2 inhibitors.


Asunto(s)
Neoplasias Peritoneales , Neoplasias de la Mama Triple Negativas , Humanos , Proteína Potenciadora del Homólogo Zeste 2/genética , Histonas/genética , Queratina-14/genética , Neoplasias Peritoneales/genética , Neoplasias Peritoneales/secundario , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Regulación hacia Arriba
6.
Subcell Biochem ; 100: 557-579, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36301506

RESUMEN

Chromatin is an organized complex of DNA, histone proteins, and RNA. Chromatin modifications include DNA methylation, RNA methylation, and histone acetylation and methylation. The methylation of chromatin complexes predominantly alters the regulation of gene expression, and its deregulation is associated with several human diseases including cancer. Cancer is a disease characterized by dynamic changes in the genetic and epigenetic architecture of a cell. Altered DNA methylation by DNA methyltransferases (DNMTs) and m6A RNA methylation facilitate tumor initiation and progression and thus serve as critical targets for cancer therapy. Small-molecule modulators of these epigenetic targets are at the hotspots of current cancer drug discovery research. Indeed, recent studies have led to the discovery of several chemical modulators against these targets, some of which have already gained approval for cancer therapy while others are undergoing clinical trials. In this chapter, we will focus on the role of small-molecule modulators in regulating DNA/RNA methylation and their implications in cancer.


Asunto(s)
Metilación de ADN , Neoplasias , Humanos , Histonas/metabolismo , Epigénesis Genética , ARN/genética , ARN/metabolismo , ARN/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Cromatina , ADN/metabolismo
7.
Cell Death Dis ; 12(5): 464, 2021 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-33966046

RESUMEN

Chemokine receptor CXCR4 overexpression in solid tumors has been strongly associated with poor prognosis and adverse clinical outcome. However, blockade of CXCL12-CXCR4 signaling axis by inhibitors like Nox-A12, FDA approved CXCR4 inhibitor drug AMD3100 have shown limited clinical success in cancer treatment. Therefore, exclusive contribution of CXCR4-CXCL12 signaling in pro-tumorigenic function is questionable. In our pursuit to understand the impact of chemokine signaling in carcinogenesis, we reveal that instead of CXCR4-CXCL12 signaling, presence of CXCR4 intracellular protein augments paclitaxel resistance and pro-tumorigenic functions. In search of pro-apoptotic mechanisms for CXCR4 mediated drug resistance; we discover that DR5 is a new selective target of CXCR4 in breast and colon cancer. Further, we detect that CXCR4 directs the differential recruitment of transcription factors p53 and YY1 to the promoter of DR5 in course of its transcriptional repression. Remarkably, inhibiting CXCR4-ligand-mediated signals completely fails to block the above phenotype. Overexpression of different mutant versions of CXCR4 lacking signal transduction capabilities also result in marked downregulation of DR5 expression in colon cancer indeed confirms the reverse relationship between DR5 and intracellular CXCR4 protein expression. Irrespective of CXCR4 surface expression, by utilizing stable gain and loss of function approaches, we observe that intracellular CXCR4 protein selectively resists and sensitizes colon cancer cells against paclitaxel therapy in vitro and in vivo. Finally, performing TCGA data mining and using human breast cancer patient samples, we demonstrate that expression of CXCR4 and DR5 are inversely regulated. Together, our data suggest that targeting CXCR4 intracellular protein may be critical to dampen the pro-tumorigenic functions of CXCR4.


Asunto(s)
Neoplasias de la Mama/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores CXCR4/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Línea Celular Tumoral , Femenino , Humanos
8.
Biotechnol Rep (Amst) ; 22: e00336, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31016142

RESUMEN

Members of Cytochromes P450 super family of enzymes catalyse important biochemical reactions in plants. Some of these reactions are so important that they contribute to enormous chemical diversity seen in plants. Many unique secondary metabolites formed by mediation of these enzymes play key role in plant defence and often contribute to maintenance of human health. In oilseed crop Sesamum indicum, the reaction leading to the formation of clinically important sesamin is catalyzed by a unique methylene-di-oxy bridge forming Cytochrome P450 enzyme sesamin synthase. It is encoded by the gene CYP81Q1. In order to elucidate the structure - function relationship of this enzyme and to apply biotechnological tools for enhancing the production of sesamin in the crop, it was intended to clone and express the enzyme in a heterologous system. In this paper we present our results on synthesis of cDNA, cloning, expression and purification of CYP81Q1 from the developing seeds of sesame crop. Following the same procedure we have also cloned a CYP reductase1 (CPR1) gene (CPR1) to facilitate transfer of electron from NADPH to CYP81Q1 enzyme from the same crop. Functional characterization was performed by expressing the recombinant proteins in E. coli (pET28a/BL21-DE3 codon plus) and its activity was evaluated in vitro by HPLC. We demonstrate that purified CYP81Q1 enzyme, on its own, has limited level of activity in the conversion of pinoresinol to sesamin. Its activity gets considerably enhanced in the presence of CPR1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...