Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 13(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36611423

RESUMEN

The research community has recently shown significant interest in designing automated systems to detect coronavirus disease 2019 (COVID-19) using deep learning approaches and chest radiography images. However, state-of-the-art deep learning techniques, especially convolutional neural networks (CNNs), demand more learnable parameters and memory. Therefore, they may not be suitable for real-time diagnosis. Thus, the design of a lightweight CNN model for fast and accurate COVID-19 detection is an urgent need. In this paper, a lightweight CNN model called LW-CORONet is proposed that comprises a sequence of convolution, rectified linear unit (ReLU), and pooling layers followed by two fully connected layers. The proposed model facilitates extracting meaningful features from the chest X-ray (CXR) images with only five learnable layers. The proposed model is evaluated using two larger CXR datasets (Dataset-1: 2250 images and Dataset-2: 15,999 images) and the classification accuracy obtained are 98.67% and 99.00% on Dataset-1 and 95.67% and 96.25% on Dataset-2 for multi-class and binary classification cases, respectively. The results are compared with four contemporary pre-trained CNN models as well as state-of-the-art models. The effect of several hyperparameters: different optimization techniques, batch size, and learning rate have also been investigated. The proposed model demands fewer parameters and requires less memory space. Hence, it is effective for COVID-19 detection and can be utilized as a supplementary tool to assist radiologists in their diagnosis.

2.
Arab J Sci Eng ; : 1-18, 2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34395157

RESUMEN

Coronavirus (COVID-19) is an epidemic that is rapidly spreading and causing a severe healthcare crisis resulting in more than 40 million confirmed cases across the globe. There are many intensive studies on AI-based technique, which is time consuming and troublesome by considering heavyweight models in terms of more training parameters and memory cost, which leads to higher time complexity. To improve diagnosis, this paper is aimed to design and establish a unique lightweight deep learning-based approach to perform multi-class classification (normal, COVID-19, and pneumonia) and binary class classification (normal and COVID-19) on X-ray radiographs of chest. This proposed CNN scheme includes the combination of three CBR blocks (convolutional batch normalization ReLu) with learnable parameters and one global average pooling (GP) layer and fully connected layer. The overall accuracy of the proposed model achieved 98.33% and finally compared with the pre-trained transfer learning model (DenseNet-121, ResNet-101, VGG-19, and XceptionNet) and recent state-of-the-art model. For validation of the proposed model, several parameters are considered such as learning rate, batch size, number of epochs, and different optimizers. Apart from this, several other performance measures like tenfold cross-validation, confusion matrix, evaluation metrics, sarea under the receiver operating characteristics, kappa score and Mathew's correlation, and Grad-CAM heat map have been used to assess the efficacy of the proposed model. The outcome of this proposed model is more robust, and it may be useful for radiologists for faster diagnostics of COVID-19.

3.
Biomed Signal Process Control ; 64: 102365, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33230398

RESUMEN

The emergence of Coronavirus Disease 2019 (COVID-19) in early December 2019 has caused immense damage to health and global well-being. Currently, there are approximately five million confirmed cases and the novel virus is still spreading rapidly all over the world. Many hospitals across the globe are not yet equipped with an adequate amount of testing kits and the manual Reverse Transcription-Polymerase Chain Reaction (RT-PCR) test is time-consuming and troublesome. It is hence very important to design an automated and early diagnosis system which can provide fast decision and greatly reduce the diagnosis error. The chest X-ray images along with emerging Artificial Intelligence (AI) methodologies, in particular Deep Learning (DL) algorithms have recently become a worthy choice for early COVID-19 screening. This paper proposes a DL assisted automated method using X-ray images for early diagnosis of COVID-19 infection. We evaluate the effectiveness of eight pre-trained Convolutional Neural Network (CNN) models such as AlexNet, VGG-16, GoogleNet, MobileNet-V2, SqueezeNet, ResNet-34, ResNet-50 and Inception-V3 for classification of COVID-19 from normal cases. Also, comparative analyses have been made among these models by considering several important factors such as batch size, learning rate, number of epochs, and type of optimizers with an aim to find the best suited model. The models have been validated on publicly available chest X-ray images and the best performance is obtained by ResNet-34 with an accuracy of 98.33%. This study will be useful for researchers to think for the design of more effective CNN based models for early COVID-19 detection.

4.
Artículo en Inglés | MEDLINE | ID: mdl-31804935

RESUMEN

We present an automatic moment capture system that runs in real-time on mobile cameras. The system is designed to run in the viewfinder mode and capture a burst sequence of frames before and after the shutter is pressed. For each frame, the system predicts in real-time a goodness score, based on which the best moment in the burst can be selected immediately after the shutter is released. We develop a highly efficient deep neural network ranking model, which implicitly learns a latent relative attribute space to capture subtle visual differences within a sequence of burst images. The overall goodness is computed as a linear aggregation of the goodnesses of all the latent attributes. To obtain a compact model which can run on mobile devices in real-time, we have explored and evaluated a wide range of network design choices, taking into account the constraints of model size, computational cost, and accuracy. Extensive studies show that the best frame predicted by our model hit users' top-1 (out of 11 on average) choice for 64.1% cases and top-3 choices for 86.2% cases. Moreover, the model (only 0.47M Bytes) can run in real time on mobile devices, e.g. 13ms on iPhone 7.

5.
Artículo en Inglés | MEDLINE | ID: mdl-25569973

RESUMEN

Robotic surgery is being used widely due to its various benefits that includes reduced patient trauma and increased dexterity and ergonomics for the operating surgeon. Making the whole or part of the surgical procedure autonomous increases patient safety and will enable the robotic surgery platform to be used in telesurgery. In this work, an Electrosurgery procedure that involves tissue compression and application of heat such as the coaptic vessel closure has been automated. A MIMO nonlinear model characterizing the tissue stiffness and conductance under compression was feedback linearized and tuned PID controllers were used to control the system to achieve both the displacement and temperature constraints. A reference input for both the constraints were chosen as a ramp and hold trajectory which reflect the real constraints that exist in an actual surgical procedure. Our simulations showed that the controllers successfully tracked the reference trajectories with minimal deviation and in finite time horizon. The MIMO system with controllers developed in this work can be used to drive a surgical robot autonomously and perform electrosurgical procedures such as coaptic vessel closures.


Asunto(s)
Automatización , Modelos Teóricos , Procedimientos Quirúrgicos Robotizados/métodos , Temperatura , Fenómenos Biomecánicos , Impedancia Eléctrica , Electrocirugia , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...