Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Nanosci Nanotechnol ; 21(5): 2847-2854, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33653450

RESUMEN

In this work, the influence of the use of alternative inexpensive silica sources on the structural, morphological and textural properties of MCM-41 like mesoporous materials to be used for biomedical applications has been investigated. The Liquid Crystal Template Method has been used to prepare the ordered mesoporous structured materials according to a novel composition starting from fumed silica or granular silica gel as alternative silica sources. The obtained materials have been characterized by X-ray Powder Diffraction, Transmission and Scanning Electron Microscopy, and nitrogen sorption, which showed for both samples the formation of the ordered hexagonal pore arrangement typical of a MCM-41 material. However, when using fumed silica, higher long-range hexagonal pore ordering as well as higher surface area have been obtained (1030 vs. 763 m²/g). For comparison, the features of a commercial silica mesostructured MCM-41 type have been investigated as well. Again, the silica fumed based sample has showed higher long-range hexagonal pore ordering, higher surface area and wall thickness. Preliminary stability studies on the fumed silica based material showed a decrease in the pore ordering at the end of the third year after the synthesis.

2.
J Nanosci Nanotechnol ; 21(5): 2930-2934, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33653460

RESUMEN

In this study, we present the preparation of superparamagnetic ordered mesoporous silica (SOMS) for biomedical applications by the combination of high energy ball milling (HEBM) and the liquid crystal template method (LCT) to produce a material comprised of room temperature superparamagnetic Fe3O4 nanoparticles in a MCM-41 like mesostructured silica. In a typical synthesis, a mixture of Fe2O3 and silica was sealed in a stainless-steel vial with steel balls. Ball milling experiments were performed in a vibratory mill apparatus. The milling process produced nanocomposites with an average size ranging from ∼100-200 nm, where the Fe3O4 nanoparticles (4.8 nm size) are homogeneously dispersed into the amorphous SiO2 matrix. The obtained nanocomposite has been used for the preparation of the SOMS through the LCT method. Structural, morphological and textural characterization were performed using X-ray powder diffraction, transmission electron microscopy and nitrogen sorption analysis. Field dependence of magnetization was investigated and showed superparamagnetic behaviour at 300 K with a value of saturation magnetization (Ms) that is of interest for biomedical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA