Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Transl Med ; 22(1): 108, 2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280995

RESUMEN

BACKGROUND: Patients with pancreatic ductal adenocarcinoma (PDCA) carrying impaired mismatch repair mechanisms seem to have an outcome advantage under treatment with conventional chemotherapy, whereas the role for the tumor mutation burden on prognosis is controversial. In this study, we evaluated the prognostic role of the mutated genes involved in genome damage repair in a real-life series of PDAC patients in a hospital-based manner from the main Institution deputed to surgically treat such a disease in North Sardinia. METHODS: A cohort of fifty-five consecutive PDAC patients with potentially resectable/border line resectable PDAC (stage IIB-III) or oligometastatic disease (stage IV) and tumor tissue availability underwent next-generation sequencing (NGS)-based analysis using a panel containing driver oncogenes and tumor suppressor genes as well as genes controlling DNA repair mechanisms. RESULTS: Genes involved in the both genome damage repair (DR) and DNA mismatch repair (MMR) were found mutated in 17 (31%) and 15 (27%) cases, respectively. One fourth of PDAC cases (14/55; 25.5%) carried tumors presenting a combination of mutations in repair genes (DR and MMR) and the highest mutation load rates (MLR-H). After correction for confounders (surgery, adjuvant therapy, stage T, and metastasis), multivariate Cox regression analysis indicated that mutations in DR genes (HR = 3.0126, 95% CI 1.0707 to 8.4764, p = 0.0367) and the MLR (HR = 1.0018, 95%CI 1.0005 to 1.0032, p = 0.009) were significantly related to worse survival. CONCLUSIONS: The combination of mutated repair genes and MLR-H, which is associated with a worse survival in our series of PDAC patients treated with conventional chemotherapy protocols, might become a predictive biomarker of response to immunotherapy in addition to its prognostic role in predicting survival.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Pronóstico , Estudios Retrospectivos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/genética , Mutación/genética , Reparación del ADN/genética
2.
J Eur Acad Dermatol Venereol ; 37(10): 1991-1998, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37335879

RESUMEN

BACKGROUND: The prognostic impact of variant allele frequency (VAF) on clinical outcome in BRAFV600 mutated metastatic melanoma patients (MMPs) receiving BRAF (BRAFi) and MEK inhibitors (MEKi) is unclear. MATERIALS AND METHODS: A cohort of MMPs receiving first line BRAFi and MEKi was identified by inspecting dedicated databases of three Italian Melanoma Intergroup centres. VAF was determined by next generation sequencing in pre-treatment baseline tissue samples. Correlation between VAF and BRAF copy number variation was analysed in an ancillary study by using a training and a validation cohort of melanoma tissue samples and cell lines. RESULTS: Overall, 107 MMPs were included in the study. The VAF cut-off determined by ROC curve was 41.3%. At multivariate analysis, progression-free survival (PFS) was significantly shorter in patients with M1c/M1d [HR 2.25 (95% CI 1.41-3.6, p < 0.01)], in those with VAF >41.3% [HR 1.62 (95% CI 1.04-2.54, p < 0.05)] and in those with ECOG PS ≥1 [HR 1.82 (95% CI 1.15-2.88, p < 0.05)]. Overall survival (OS) was significantly shorter in patients with M1c/M1d [HR 2.01 (95% CI 1.25-3.25, p < 0.01)]. Furthermore, OS was shorter in patients with VAF >41.3% [HR 1.46 (95% CI 0.93-2.29, p = 0.06)] and in patients with ECOG PS ≥1 [HR 1.52 (95% CI 0.94-2.87, p = 0.14)]. BRAF gene amplification was found in 11% and 7% of samples in the training and validation cohort, respectively. CONCLUSIONS: High VAF is an independent poor prognostic factor in MMP receiving BRAFi and MEKi. High VAF and BRAF amplification coexist in 7%-11% of patients.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Variaciones en el Número de Copia de ADN , Estudios Retrospectivos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/uso terapéutico , Frecuencia de los Genes , Mutación
3.
Pathologica ; 115(2): 101-106, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37114627

RESUMEN

Vulvar adenocarcinomas are rare tumors, representing approximately 5% of vulvar cancers. Mammary-like adenocarcinomas of the vulva (MLAV) are extremely rare, and their molecular features are poorly described in the scientific literature. We report a case of an 88-year-old woman affected by MLAV with comedo-like features, with a detailed description of the pathological, immunohistochemical and molecular features. Immunohistochemistry (IHC) showed strong staining for cytokeratin 7, GATA3, androgen receptor, GCFPD15, and weak staining for mammaglobin; no staining for Her-2 was found. The proliferation index (Ki-67) was 15%. Molecular testing detected a pathogenic mutation of the AKT1 gene, a likely pathogenic frameshift insertion of the JAK1 gene, and two likely pathogenic frameshift deletions of the KMT2C gene; in addition, two variants of unknown significance (VUS) involving the ARID1A and OR2T4 genes were detected. Finally, two CNVs of the BRCA1 gene were identified.


Asunto(s)
Adenocarcinoma , Neoplasias de la Vulva , Femenino , Humanos , Anciano de 80 o más Años , Secuenciación de Nucleótidos de Alto Rendimiento , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Vulva/patología , Neoplasias de la Vulva/diagnóstico , Neoplasias de la Vulva/genética , Mama/patología
4.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37047382

RESUMEN

Oncogenic mutations in the EGFR gene are targets of tyrosine kinase inhibitors (TKIs) in lung adenocarcinoma (LC) patients, and their search is mandatory to make decisions on treatment strategies. Liquid biopsy of circulating tumour DNA (ctDNA) is increasingly used to detect EGFR mutations, including main activating alterations (exon 19 deletions and exon 21 L858R mutation) and T790M mutation, which is the most common mechanism of acquired resistance to first- and second-generation TKIs. In this study, we prospectively compared three different techniques for EGFR mutation detection in liquid biopsies of such patients. Fifty-four ctDNA samples from 48 consecutive advanced LC patients treated with TKIs were tested for relevant EGFR mutations with Therascreen® EGFR Plasma RGQ-PCR Kit (Qiagen). Samples were subsequently tested with two different technologies, with the aim to compare the EGFR detection rates: real-time PCR based Idylla™ ctEGFR mutation assay (Biocartis) and next-generation sequencing (NGS) system with Ion AmpliSeq Cancer Hotspot panel (ThermoFisher). A high concordance rate for main druggable EGFR alterations was observed with the two real-time PCR-based assays, ranging from 100% for T790M mutation to 94% for L858R variant and 85% for exon 19 deletions. Conversely, lower concordance rates were found between real-time PCR approaches and the NGS method (L858R: 88%; exon19-dels: 74%; T790M: 37.5%). Our results evidenced an equivalent detection ability between PCR-based techniques for circulating EGFR mutations. The NGS assay allowed detection of a wider range of EGFR mutations but showed a poor ability to detect T790M.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Receptores ErbB/genética , Inhibidores de Proteínas Quinasas/farmacología , Adenocarcinoma del Pulmón/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Biopsia Líquida , Resistencia a Antineoplásicos/genética
5.
J Exp Clin Cancer Res ; 41(1): 325, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36397155

RESUMEN

BACKGROUND: Improvement of efficacy of immune checkpoint blockade (ICB) remains a major clinical goal. Association of ICB with immunomodulatory epigenetic drugs is an option. However, epigenetic inhibitors show a heterogeneous landscape of activities. Analysis of transcriptional programs induced in neoplastic cells by distinct classes of epigenetic drugs may foster identification of the most promising agents. METHODS: Melanoma cell lines, characterized for mutational and differentiation profile, were treated with inhibitors of DNA methyltransferases (guadecitabine), histone deacetylases (givinostat), BET proteins (JQ1 and OTX-015), and enhancer of zeste homolog 2 (GSK126). Modulatory effects of epigenetic drugs were evaluated at the gene and protein levels. Master molecules explaining changes in gene expression were identified by Upstream Regulator (UR) analysis. Gene set enrichment and IPA were used respectively to test modulation of guadecitabine-specific gene and UR signatures in baseline and on-treatment tumor biopsies from melanoma patients in the Phase Ib NIBIT-M4 Guadecitabine + Ipilimumab Trial. Prognostic significance of drug-specific immune-related genes was tested with Timer 2.0 in TCGA tumor datasets. RESULTS: Epigenetic drugs induced different profiles of gene expression in melanoma cell lines. Immune-related genes were frequently upregulated by guadecitabine, irrespective of the mutational and differentiation profiles of the melanoma cell lines, to a lesser extent by givinostat, but mostly downregulated by JQ1 and OTX-015. GSK126 was the least active drug. Quantitative western blot analysis confirmed drug-specific modulatory profiles. Most of the guadecitabine-specific signature genes were upregulated in on-treatment NIBIT-M4 tumor biopsies, but not in on-treatment lesions of patients treated only with ipilimumab. A guadecitabine-specific UR signature, containing activated molecules of the TLR, NF-kB, and IFN innate immunity pathways, was induced in drug-treated melanoma, mesothelioma and hepatocarcinoma cell lines and in a human melanoma xenograft model. Activation of guadecitabine-specific UR signature molecules in on-treatment tumor biopsies discriminated responding from non-responding NIBIT-M4 patients. Sixty-five % of the immune-related genes upregulated by guadecitabine were prognostically significant and conferred a reduced risk in the TCGA cutaneous melanoma dataset. CONCLUSIONS: The DNMT inhibitor guadecitabine emerged as the most promising immunomodulatory agent among those tested, supporting the rationale for usage of this class of epigenetic drugs in combinatorial immunotherapy approaches.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Ipilimumab/uso terapéutico , Neoplasias Cutáneas/genética , Inmunoterapia , Epigénesis Genética
6.
BMC Pulm Med ; 22(1): 32, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012520

RESUMEN

BACKGROUND: Advanced lung adenocarcinoma (LAC) is one of the most lethal malignancies worldwide. The aim of this study was to evaluate the global survival in a real-life cohort of patients with LAC harboring driver genetic alterations. METHODS: A series of 1282 consecutive Sardinian LAC patients who underwent genetic testing from January 2011 through July 2016 was collected. Molecular tests were based on the clinical needs of each single case (EGFR-exon18/19/21, ALK, and, more recently, BRAF-exon15), and the availability of tissue (KRAS, MET, and presence of low-frequency EGFR-T790M mutated alleles at baseline). RESULTS: The mean follow-up time of the patients was 46 months. EGFR, KRAS, and BRAF mutations were detected in 13.7%, 21.3%, and 3% of tested cases, respectively; ALK rearrangements and MET amplifications were found respectively in 4.7% and 2% of tested cases. As expected, cases with mutations in exons 18-21 of EGFR, sensitizing to anti-EGFR tyrosine kinase inhibitors (TKIs) agents, had a significantly longer survival in comparison to those without (p < 0.0001); conversely, KRAS mutations were associated with a significantly lower survival (p = 0.0058). Among LAC patients with additional tissue section available for next-generation sequencing (NGS)-based analysis, 26/193 (13.5%) patients found positive for even low-rate EGFR-T790M mutated alleles at baseline were associated with a highly significant lower survival in comparison to those without (8.7 vs. 47.4 months, p < 0.0001). CONCLUSIONS: In addition to its predictive value for addressing targeted therapy approaches, the assessment of as more inclusive mutation analysis at baseline may provide clues about factors significantly impacting on global survival in advanced LAC patients.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/mortalidad , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Anciano , Quinasa de Linfoma Anaplásico/genética , Biomarcadores de Tumor/genética , Estudios de Cohortes , Receptores ErbB/genética , Femenino , Genes erbB-1 , Humanos , Italia/epidemiología , Masculino , Persona de Mediana Edad , Pronóstico , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas p21(ras)/genética
7.
Cancers (Basel) ; 13(12)2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34205480

RESUMEN

Deep penetrating nevi (DPNs) are rare melanocytic neoplasms consisting of pigmented spindled or epithelioid melanocytes with a distinctive wedge-shaped configuration showing activation of the WNT pathway, with unusual cyto-architectural features. It is unclear whether they show a distinct genomic profile associated with a diverse metastatic potential. We describe herein a cohort of 21 atypical DPNs analyzed by next-generation sequencing using the Ion AmpliSeq™ Comprehensive Cancer Panel. We found that ß-catenin exon 3 was mutated in 95% and MAP kinase pathway genes in 71% of the cases. Less frequent mutations were observed in HRAS (19%) and MAP2K1 (24%). Isocitrate dehydrogenases 1 (IDH1) mutations, including R132C, V178I, and S278L, were identified in 38% of cases and co-existed with BRAF/HRAS mutations. The only case with progressive nodal disease carried alterations in the ß-catenin pathway and mutations in IDH1 and NRAS (codon 61). By a comprehensive mutation analysis, we found low genetic heterogeneity and a lack of significant associations between specific gene mutations and histopathological features, despite atypical features. Whether the acquisition of an NRAS or IDH1 mutation in an atypical DPN may represent a molecular evolution implying a pathway to melanoma progression should be confirmed in a larger series.

8.
Front Oncol ; 11: 666624, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34026645

RESUMEN

The improvement of the immunotherapeutic potential in most human cancers, including melanoma, requires the identification of increasingly detailed molecular features underlying the tumor immune responsiveness and acting as disease-associated biomarkers. In recent past years, the complexity of the immune landscape in cancer tissues is being steadily unveiled with a progressive better understanding of the plethora of actors playing in such a scenario, resulting in histopathology diversification, distinct molecular subtypes, and biological heterogeneity. Actually, it is widely recognized that the intracellular patterns of alterations in driver genes and loci may also concur to interfere with the homeostasis of the tumor microenvironment components, deeply affecting the immune response against the tumor. Among others, the different events linked to genetic instability-aneuploidy/somatic copy number alteration (SCNA) or microsatellite instability (MSI)-may exhibit opposite behaviors in terms of immune exclusion or responsiveness. In this review, we focused on both prevalence and impact of such different types of genetic instability in melanoma in order to evaluate whether their use as biomarkers in an integrated analysis of the molecular profile of such a malignancy may allow defining any potential predictive value for response/resistance to immunotherapy.

9.
J Clin Med ; 9(8)2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751423

RESUMEN

Malignant melanoma (MM) is one of the deadliest skin cancers. BRAF mutation status plays a predominant role in the management of MM patients. The aim of this study was to compare BRAF mutational testing performed by conventional nucleotide sequencing approaches with either real-time polymerase chain reaction (rtPCR) or next-generation sequencing (NGS) assays in a real-life, hospital-based series of advanced MM patients. Consecutive patients with AJCC (American Joint Committee on Cancer) stage IIIC and IV MM from Sardinia, Italy, who were referred for molecular testing, were enrolled into the study. Initial screening was performed to assess the mutational status of the BRAF and NRAS genes, using the conventional methodologies recognized by the nationwide guidelines, at the time of the molecular classification, required by clinicians: at the beginning, Sanger-based sequencing (SS) and, after, pyrosequencing. The present study was then focused on BRAF mutation detecting approaches only. BRAF wild-type cases with available tissue and adequate DNA were further tested with rtPCR (Idylla™) and NGS assays. Globally, 319 patients were included in the study; pathogenic BRAF mutations were found in 144 (45.1%) cases examined with initial screening. The rtPCR detected 11 (16.2%) and 3 (4.8%) additional BRAF mutations after SS and pyrosequencing, respectively. NGS detected one additional BRAF-mutated case (2.1%) among 48 wild-type cases previously tested with pyrosequencing and rtPCR. Our study evidenced that rtPCR and NGS were able to detect additional BRAF mutant cases in comparison with conventional sequencing methods; therefore, we argue for the preferential utilization of the aforementioned assays (NGS and rtPCR) in clinical practice, to eradicate false-negative cases and improve the accuracy of BRAF detection.

10.
Methods Mol Biol ; 2055: 133-154, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31502150

RESUMEN

High frequency of mutations seems to determine a higher occurrence of neoepitope formation and, thus, tumor immunogenicity. A somatic hypermutated status could thus act as a predictive biomarker of responsiveness to immunotherapy with recent immune checkpoint inhibitors. Among several factors involved in determining the hypermutated status, such as inactivating mutations in the DNA polymerases as well as exposure to external (cigarette smoke, UV radiation, chemicals) and endogenous (reactive oxygen species) mutagens, a defective DNA mismatch repair system may give rise to genetic instability and, particularly, to microsatellite instability (MSI). The occurrence of MSI has been associated with increased load of mutations and expression of abundant peptides that serve as neoantigens to elicit an immune response within a context of a favorable tumor microenvironment. Here we describe methodological strategies to investigate for the presence of the MSI phenotype in cancer samples, through a combination of molecular approaches performed on paraffin-embedded tissues.


Asunto(s)
Biomarcadores de Tumor/genética , Biomarcadores de Tumor/inmunología , Inestabilidad de Microsatélites , Neoplasias/genética , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Humanos , Inmunohistoquímica , Mutación , Neoplasias/inmunología , Adhesión en Parafina , Reacción en Cadena de la Polimerasa , Microambiente Tumoral
11.
BMC Pulm Med ; 19(1): 209, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31711449

RESUMEN

BACKGROUND: Lung cancer is one of the most incident neoplastic diseases, and a leading cause of death for cancer worldwide. Knowledge of the incidence of druggable genetic alterations, their correlation with clinical and pathological features of the disease, and their interplay in cases of co-occurrence is crucial for selecting the best therapeutic strategies of patients with non-small cell lung cancer. In this real-life study, we describe the molecular epidemiology of genetic alterations in five driver genes and their correlations with the demographic and clinical characteristics of Sardinian patients with lung adenocarcinoma. METHODS: Data from 1440 consecutive Sardinian patients with a histologically proven diagnosis of lung adenocarcinoma from January 2011 through July 2016 were prospectively investigated. EGFR mutation analysis was performed for all of them, while KRAS and BRAF mutations were searched in 1047 cases; ALK alterations were determined with fluorescence in situ hybridization in 899 cases, and cMET amplifications in 788 cases. RESULTS: KRAS mutations were the most common genetic alterations involving 22.1% of the cases and being mutually exclusive with the EGFR mutations, which were found in 12.6% of them. BRAF mutations, ALK rearrangements, and cMET amplifications were detected in 3.2, 5.3, and 2.1% of the cases, respectively. Concomitant mutations were detected only in a few cases. CONCLUSIONS: Almost all the genetic alterations studied showed a similar incidence in comparison with other Caucasian populations. Concomitant mutations were rare, and they probably have a scarce impact on the clinical management of Sardinians with lung adenocarcinoma. The low incidence of concomitant cMET amplifications at diagnosis suggests that these alterations are acquired in subsequent phases of the disease, often during treatment with TKIs.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Quinasa de Linfoma Anaplásico/genética , Neoplasias Pulmonares/genética , Mutación , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Adenocarcinoma del Pulmón/epidemiología , Adenocarcinoma del Pulmón/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Quinasa de Linfoma Anaplásico/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Análisis Mutacional de ADN , ADN de Neoplasias/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Humanos , Hibridación Fluorescente in Situ , Incidencia , Italia/epidemiología , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/metabolismo , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Proteínas Proto-Oncogénicas c-met/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Tasa de Supervivencia/tendencias
12.
J Clin Med ; 8(10)2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31581559

RESUMEN

Sinonasal mucosal melanoma (SNM) is a rare and aggressive type of melanoma, and because of this, we currently have a limited understanding of its genetic and molecular constitution. The incidence among SNMs of somatic mutations in the genes involved in the main molecular pathways, which have been largely associated with cutaneous melanoma, is not yet fully understood. Through a next-generation sequencing (NGS) approach using a panel of 25 genes involved in melanoma pathogenesis customized by our group, we performed a mutation analysis in a cohort of 25 SNM patients. Results showed that pathogenic mutations were found in more than 60% of SNM cases at a somatic level, with strikingly 32% of them carrying deleterious mutations in the BRAF gene. The identified mutations mostly lack the typical UV signature associated with cutaneous melanomas and showed no significant association with any histopathological parameter. Oncogenic activation of the BRAF-depending pathway, which may induce immune tolerance into the tumour microenvironment (i.e., by increasing the VEGF production) was poorly associated with mutations in genes that have been related to diminished clinical benefit of the treatment with BRAF inhibitors. Screening for mutations in BRAF and other MAPK genes should be included in the routine diagnostic test for a better classification of SNM patients.

13.
BMC Cancer ; 19(1): 772, 2019 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-31382929

RESUMEN

INTRODUCTION: Multiple primary melanomas (MPM) occur up to 8% of patients with cutaneous malignant melanoma (CMM). They are often sporadic harbouring several somatic mutations, but also familial cases harbouring a CDKN2A germline mutation have been describe in Caucasian populations. The aim of this study was to investigate the incidence, the distribution patterns and the impact of known and unknown germline and somatic mutations in patients with MPM from Italy. MATERIALS AND METHODS: One-hundred and two MPM patients were enrolled for germline mutation analysis, and five patients with at least four MPMs were identified for somatic mutation analysis. The demographic, pathologic and clinical features were retrieved from medical records. Molecular analysis for both germline and somatic mutations was performed in genomic DNA from peripheral blood and tissue samples, respectively, through a next generation sequencing approach, using a specific multiple-gene panel constructed by the Italian Melanoma Intergroup for somatic analysis and a commercial cancer hotspot panel for somatic analysis. RESULTS: CDKN2A mutations were detected in 6/16 (37.5%) and 3/86 (3.5%) MPM cases with and without family history for melanoma, respectively. Furthermore, multiple MC1R and, to a lesser extent, ATM variants have been identified. BAP1 variants were found only in MPM patients from southern Italy. The most frequent somatic variants were the pathogenic BRAFV600E and TP53, followed by KIT, PIK3CA, KDR, and NRAS. Single APC, ERBB4, MET, JAK3 and other variants with unknown function were also detected. CONCLUSIONS: CDNK2A mutation is the most relevant susceptibility mutation in Italian patients with MPM, especially those with a family history for CMM. The prevalence of this mutation and other sequence variants identified in this study varies among specific sub-populations. Furthermore, some heterogeneity in driver somatic mutations between sporadic MPMs has been observed, as well as in a number of associated sequence variants the clinical impact of which needs to be further elucidated.


Asunto(s)
Mutación de Línea Germinal/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Melanoma/genética , Neoplasias Primarias Múltiples/genética , Neoplasias Cutáneas/genética , Adulto , Anciano , Carcinogénesis/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Femenino , Estudios de Seguimiento , Amplificación de Genes/genética , Frecuencia de los Genes/genética , Sitios Genéticos/genética , Predisposición Genética a la Enfermedad , Humanos , Italia , Masculino , Persona de Mediana Edad , Proteínas Supresoras de Tumor/genética , Ubiquitina Tiolesterasa/genética , Melanoma Cutáneo Maligno
14.
J Transl Med ; 17(1): 289, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31455347

RESUMEN

BACKGROUND: Cutaneous malignant melanoma (CMM) is one of the most common skin cancers worldwide. Limited information is available in the current scientific literature on the concordance of genetic alterations between primary and metastatic CMM. In the present study, we performed next-generation sequencing (NGS) analysis of the main genes participating in melanoma pathogenesis and progression, among paired primary and metastatic lesions of CMM patients, with the aim to evaluate levels of discrepancies in mutational patterns. METHODS: Paraffin-embedded tumor tissues of the paired lesions were retrieved from the archives of the institutions participating in the study. NGS was performed using a specific multiple-gene panel constructed by the Italian Melanoma Intergroup (IMI) to explore the mutational status of selected regions (343 amplicons; amplicon range: 125-175 bp; coverage 100%) within the main 25 genes involved in CMM pathogenesis; sequencing was performed with the Ion Torrent PGM System. RESULTS: A discovery cohort encompassing 30 cases, and a validation cohort including eleven Sardinian patients with tissue availability from both the primary and metachronous metastatic lesions were identified; the global number of analyzed tissue specimens was 90. A total of 829 genetic non-synonymous variants were detected: 101 (12.2%) were pathogenic/likely pathogenic, 131 (15.8%) were benign/likely benign, and the remaining 597 (72%) were uncertain/unknown significance variants. Considering the global cohort, the consistency in pathogenic/pathogenic like mutations was 76%. Consistency for BRAF and NRAS mutations was 95.2% and 85.7% respectively, without statistically significant differences between the discovery and validation cohort. CONCLUSIONS: Our study showed a high level of concordance in mutational patterns between primary and metastatic CMM, especially when pathogenic mutations in driver genes were considered.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Melanoma/genética , Melanoma/patología , Mutación/genética , Estudios de Cohortes , Femenino , GTP Fosfohidrolasas/genética , Humanos , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Metástasis de la Neoplasia , Proteínas Proto-Oncogénicas B-raf/genética
15.
Nutr Metab (Lond) ; 16: 33, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139235

RESUMEN

Cutaneous malignant melanoma is a heterogeneous disease, being the consequence of specific genetic alterations along several molecular pathways. Despite the increased knowledge about the biology and pathogenesis of melanoma, the incidence has grown markedly worldwide, making it extremely important to develop preventive measures. The beneficial role of correct nutrition and of some natural dietary compounds in preventing malignant melanoma has been widely demonstrated. This led to numerous studies investigating the role of several dietary attitudes, patterns, and supplements in the prevention of melanoma, and ongoing research investigates their impact in the clinical management and outcomes of patients diagnosed with the disease. This article is an overview of recent scientific advances regarding specific dietary compounds and their impact on melanoma development and treatment.

16.
Diagnostics (Basel) ; 9(2)2019 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-30979070

RESUMEN

Most non-small-cell lung cancer (NSCLC) patients are likely to develop brain metastases during the course of their illness. Currently, no consensus on NSCLC patients' treatment with brain metastasis has been established. Although whole brain radiotherapy prolongs the median survival time of approximately 4 months, a cisplatin-pemetrexed combination may also represent a potential option in the treatment of asymptomatic NSCLC patients with brain metastases. Herein, we report the case of a non-smoker male patient with multiple, large and diffuse brain metastases from an "epidermal growth factor receptor (EGFR) wild-type" lung adenocarcinoma who underwent an overly aggressive chemo/radiation therapy. This approach led to a complete and durable remission of the disease and to a long survival of up to 58 months from diagnosis of primary tumor. The uncommon course of this metastatic disease induced us to describe its oncological management and to investigate the molecular features of the tumor.

17.
Oncotarget ; 9(9): 8531-8541, 2018 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-29492214

RESUMEN

Cutaneous melanoma is a common and aggressive human skin cancers. Much is actually known about the molecular mechanisms underlying melanoma pathogenesis. The aim of the study was to evaluate any possible correlation between mutations in main growth-controlling genes (BRAF, NRAS, CDKN2A) and copy number variations in frequently amplified candidate genes (MITF, EGFR, CCND1, cMET, and cKIT) during melanoma initiation and progression. A large series of primary and secondary melanoma tissue samples (N = 274) from 232 consecutively-collected patients of Italian origin as well as 32 tumor cell lines derived from primary and metastatic melanomas underwent mutation screening and fluorescence in situ hybridization (FISH) analysis. Overall, BRAF, NRAS, and CDKN2A were found mutated in 62.5%, 12.5% and 59% cell lines and in 47%, 16%, 12% tumor tissues, respectively. Quite identical mutation patterns between primary tumors and metastatic lesions were found for BRAF and NRAS genes; mutations of CDKN2A gene appeared to be instead selected during tumor progression. In cell lines, high rates of gene amplifications were observed (varying from 12.5% for cKIT to 50% for MITF); vast majority of cell lines (75%) presented at least one amplified gene. Conversely, prevalence of gene amplification was significantly and progressively decreasing in melanoma metastases (12%) and primary melanomas (4%). Our findings suggest that gene amplifications may be acquired during the late phases of melanoma evolution and mostly act as "passenger" or "non-causative" alterations.

18.
Eur J Dermatol ; 28(2): 149-156, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29180316

RESUMEN

Cutaneous melanoma is one of the most frequent malignancies of the skin in Caucasian populations. Patients who develop cutaneous melanoma are at increased risk of developing a second primary melanoma. The estimated incidence of multiple primary melanoma (MPM) ranges from 1.2% to 8.2% of cases, with a high preponderance of melanomas occurring metachronously. The aim of this study was to describe dermoscopic, microscopic, clinical, and molecular correlations between first and subsequent melanomas in patients with metachronous MPMs. Twenty-four paired melanomas from 12 MPM patients were evaluated for architectural characteristics based on dermoscopy and confocal microscopy, as well as for mutations in BRAF and NRAS genes by Sanger-based sequencing analysis. Specific scores used for classifying features of dermoscopy (global pattern; 7-point check list; ABCD Stolz score) and confocal microscopy (Segura and Pellacani) were compared with genetic and histological data. Consistency in dermoscopic patterns between the primary and subsequent cutaneous melanomas were observed in about two thirds of cases, whereas concordant features based on confocal microscopy were found in only about two fifths of cases. The majority of patients (7/12; 58%) presented consistent BRAF/NRAS mutation patterns between first and subsequent primary melanomas. A significant association between BRAF mutations and Pellacani score was evident. Similarities between the index melanoma and subsequent cutaneous melanomas were observed with regards to dermoscopic features and, to a much less extent, confocal microscopy findings. Our data further indicate that the Pellacani score may be used to predict BRAF mutations.


Asunto(s)
Genes ras/genética , Melanoma/genética , Melanoma/patología , Mutación , Neoplasias Primarias Múltiples/genética , Neoplasias Primarias Múltiples/patología , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Dermoscopía , Femenino , Humanos , Masculino , Microscopía Confocal , Persona de Mediana Edad
19.
Crit Rev Oncol Hematol ; 111: 31-38, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28259293

RESUMEN

Long non-coding RNAs cover large part of the non-coding information of the human DNA, which represents more than 90% of the whole genome. They constitute a wide and complex group of molecules with more than 200 nucleotides, which generally lack an open reading frame, and are involved in various ways in the pathophysiology of cancer. Their roles in the regulation of gene expression, imprinting, transcription, and post-translational processing have been described in several types of cancer. CASC2 was discovered in 2004 in patients with endometrial carcinoma as a potential tumor suppressor. Since then, additional studies in other types of neoplasia have been carried out, and both mechanisms and interactions of CASC2 in cancer have been better elucidated. In this review, we summarize the current knowledge on the role of CASC2 in the genesis, progression, and clinical management of human cancer.


Asunto(s)
Neoplasias Endometriales/genética , ARN Largo no Codificante/genética , Proteínas Supresoras de Tumor/genética , Animales , Femenino , Genes Supresores de Tumor , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...