Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38573211

RESUMEN

Background: Autochthonous human West Nile virus (WNV) infections were notified in the infectious disease surveillance system in Germany in 2018 for the first time and every year since then. Since clinically apparent infections are infrequent, we conducted two studies to investigate subclinical infections of this emerging disease in Germany in 2019 to detect infections not visible to surveillance based on symptomatic infections: limited-scope blood donor testing and a serosurvey among employees at two Berlin zoos with a history of demonstrated WNV infections in animals. Methods: For the zoo study, employees of the two zoos in Berlin were invited to participate in the study in late 2019. Blood samples were drawn and tested for the presence of antibodies (immunoglobulin M [IgM] and immunoglobulin G [IgG]) against WNV, and two other flaviviruses present in Germany: Usutu virus and Tick-borne encephalitis virus (TBEV). For the study in blood donors, four blood establishments with collection sites in regions with documented WNV-infected animals in 2018 and 2019 participated in the study. All donations in these regions were tested for WNV genome from July to November 2019. Results: In the enzyme-linked immunosorbent assay, none of the 70 tested zoo employees were WNV IgM-positive, 8 were WNV IgG-positive, additional 2 participants had equivocal results. All 10 were negative in the virus neutralization test (VNT) for WNV, but positive in the VNT for TBEV. None of the 4273 samples from blood donors tested in areas with WNV-infected animals was positive for WNV-RNA. Conclusion: Our results indicate that WNV circulation in Germany, though clearly documented in animals in 2019, apparently affected very few humans. Still areas with WNV-positive animals remain risk areas for human infection as well.

2.
PLoS Pathog ; 20(1): e1011880, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38271294

RESUMEN

BACKGROUND: West Nile virus (WNV) outbreaks in birds, humans, and livestock have occurred in multiple areas in Europe and have had a significant impact on animal and human health. The patterns of emergence and spread of WNV in Europe are very different from those in the US and understanding these are important for guiding preparedness activities. METHODS: We mapped the evolution and spread history of WNV in Europe by incorporating viral genome sequences and epidemiological data into phylodynamic models. Spatially explicit phylogeographic models were developed to explore the possible contribution of different drivers to viral dispersal direction and velocity. A "skygrid-GLM" approach was used to identify how changes in environments would predict viral genetic diversity variations over time. FINDINGS: Among the six lineages found in Europe, WNV-2a (a sub-lineage of WNV-2) has been predominant (accounting for 73% of all sequences obtained in Europe that have been shared in the public domain) and has spread to at least 14 countries. In the past two decades, WNV-2a has evolved into two major co-circulating clusters, both originating from Central Europe, but with distinct dynamic history and transmission patterns. WNV-2a spreads at a high dispersal velocity (88km/yr-215 km/yr) which is correlated to bird movements. Notably, amongst multiple drivers that could affect the spread of WNV, factors related to land use were found to strongly influence the spread of WNV. Specifically, the intensity of agricultural activities (defined by factors related to crops and livestock production, such as coverage of cropland, pasture, cultivated and managed vegetation, livestock density) were positively associated with both spread direction and velocity. In addition, WNV spread direction was associated with high coverage of wetlands and migratory bird flyways. CONCLUSION: Our results suggest that-in addition to ecological conditions favouring bird- and mosquito- presence-agricultural land use may be a significant driver of WNV emergence and spread. Our study also identified significant gaps in data and the need to strengthen virological surveillance in countries of Central Europe from where WNV outbreaks are likely seeded. Enhanced monitoring for early detection of further dispersal could be targeted to areas with high agricultural activities and habitats of migratory birds.


Asunto(s)
Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Humanos , Virus del Nilo Occidental/genética , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/veterinaria , Filogeografía , Europa (Continente)/epidemiología , Brotes de Enfermedades
3.
Life Sci Alliance ; 6(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37748810

RESUMEN

During the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), positive-sense genomic RNA and subgenomic RNAs (sgRNAs) are synthesized by a discontinuous process of transcription characterized by a template switch, regulated by transcription-regulating sequences (TRS). Although poorly known about makeup and dynamics of sgRNAs population and function of its constituents, next-generation sequencing approaches with the help of bioinformatics tools have made a significant contribution to expand the knowledge of sgRNAs in SARS-CoV-2. For this scope to date, Periscope, LeTRS, sgDI-tector, and CORONATATOR have been developed. However, limited number of studies are available to compare the performance of such tools. To this purpose, we compared Periscope, LeTRS, and sgDI-tector in the identification of canonical (c-) and noncanonical (nc-) sgRNA species in the data obtained with the Illumina ARTIC sequencing protocol applied to SARS-CoV-2-infected Caco-2 cells, sampled at different time points. The three software showed a high concordance rate in the identification and in the quantification of c-sgRNA, whereas more differences were observed in nc-sgRNA. Overall, LeTRS and sgDI-tector result to be adequate alternatives to Periscope to analyze Fastq data from sequencing platforms other than Nanopore.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , ARN Subgenómico , Células CACO-2 , Biología Computacional , ARN
4.
Euro Surveill ; 28(33)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37589592

RESUMEN

BackgroundUsutu virus (USUV) is a flavivirus with an enzootic cycle between birds and mosquitoes; humans are incidental dead-end hosts. In Europe, the virus was first detected in Italy in 1996; since then, it has spread to many European countries.AimWe aimed to report on the epidemiology, surveillance, diagnosis and prevention of USUV infection in humans, mosquitoes and other animals in the European Union/European Economic Area (EU/EEA) from 2012 to 2021.MethodsWe collected information through a literature review, an online survey and an expert meeting.ResultsEight countries reported USUV infection in humans (105 cases, including 12 [corrected] with neurological symptoms), 15 countries in birds and seven in mosquitoes. Infected animals were also found among pets, wild and zoo animals. Usutu virus was detected primarily in Culex pipiens but also in six other mosquito species. Detection of USUV infection in humans is notifiable only in Italy, where it is under surveillance since 2017 and now integrated with surveillance in animals in a One Health approach. Several countries include USUV infection in the differential diagnosis of viral encephalitis and arbovirus infections. Animal USUV infection is not notifiable in any EU/EEA country.ConclusionHuman USUV infections, mainly asymptomatic and, less frequently, with a febrile illness or a neuroinvasive disease, have been reported in several EU/EEA countries, where the virus is endemic. Climate and environmental changes are expected to affect the epidemiology of USUV. A One Health approach could improve the monitoring of its evolution in Europe.


Asunto(s)
Culicidae , Infecciones por Flavivirus , Flavivirus , Animales , Humanos , Diagnóstico Diferencial , Encefalitis Viral , Europa (Continente)/epidemiología , Infecciones por Flavivirus/diagnóstico , Infecciones por Flavivirus/epidemiología , Vigilancia en Salud Pública
5.
J Exp Med ; 220(9)2023 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-37347462

RESUMEN

Mosquito-borne West Nile virus (WNV) infection is benign in most individuals but can cause encephalitis in <1% of infected individuals. We show that ∼35% of patients hospitalized for WNV disease (WNVD) in six independent cohorts from the EU and USA carry auto-Abs neutralizing IFN-α and/or -ω. The prevalence of these antibodies is highest in patients with encephalitis (∼40%), and that in individuals with silent WNV infection is as low as that in the general population. The odds ratios for WNVD in individuals with these auto-Abs relative to those without them in the general population range from 19.0 (95% CI 15.0-24.0, P value <10-15) for auto-Abs neutralizing only 100 pg/ml IFN-α and/or IFN-ω to 127.4 (CI 87.1-186.4, P value <10-15) for auto-Abs neutralizing both IFN-α and IFN-ω at a concentration of 10 ng/ml. These antibodies block the protective effect of IFN-α in Vero cells infected with WNV in vitro. Auto-Abs neutralizing IFN-α and/or IFN-ω underlie ∼40% of cases of WNV encephalitis.


Asunto(s)
Interferón Tipo I , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Chlorocebus aethiops , Humanos , Células Vero , Autoanticuerpos , Anticuerpos Antivirales , Interferón-alfa
6.
ACS Chem Neurosci ; 14(11): 2089-2097, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37172190

RESUMEN

Angiotensin-converting enzyme 2 receptor (ACE2R) is a transmembrane protein expressed in various tissues throughout the body that plays a key role in the regulation of blood pressure. Recently, ACE2R has gained significant attention due to its involvement in the pathogenesis of COVID-19, the disease caused by the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2). While ACE2 receptors serve as entry points for the novel coronavirus, Transmembrane Serine Protease 2 (TMPRSS2), an enzyme located on the cell membrane, is required for SARS-CoV-2 S protein priming. Even though numerous studies have assessed the effects of COVID-19 on the brain, very little information is available concerning the distribution of ACE2R and TMPRSS2 in the human brain, with particular regard to their topographical expression in the brainstem. In this study, we investigated the expression of ACE2R and TMPRSS2 in the brainstem of 18 adult subjects who died due to pneumonia/respiratory insufficiency. Our findings indicate that ACE2R and TMPRSS2 are expressed in neuronal and glial cells of the brainstem, particularly at the level of the vagal nuclei of the medulla and the midbrain tegmentum, thus confirming the expression and anatomical localization of these proteins within specific human brainstem nuclei. Furthermore, our findings help to define anatomically susceptible regions to SARS-CoV-2 infection in the brainstem, advancing knowledge on the neuropathological underpinnings of neurological manifestations in COVID-19.


Asunto(s)
COVID-19 , Adulto , Humanos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Tronco Encefálico , Serina Endopeptidasas/genética
7.
Clin Transl Immunology ; 12(3): e1434, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969367

RESUMEN

Objectives: The very rapidly approved mRNA-based vaccines against SARS-CoV-2 spike glycoprotein, including Pfizer-BioNTech BNT162b2, are effective in protecting from severe coronavirus disease 2019 (COVID-19) in immunocompetent population. However, establishing the duration and identifying correlates of vaccine-induced protection will be crucial to optimise future immunisation strategies. Here, we studied in healthy vaccine recipients and people with multiple sclerosis (pwMS), undergoing different therapies, the regulation of innate immune response by mRNA vaccination in order to correlate it with the magnitude of vaccine-induced protective humoral responses. Methods: Healthy subjects (n = 20) and matched pwMS (n = 22) were longitudinally sampled before and after mRNA vaccination. Peripheral blood mononuclear cell (PBMC)-associated type I and II interferon (IFN)-inducible gene expression, serum innate cytokine/chemokine profile as well as binding and neutralising anti-SARS-COV-2 antibodies (Abs) were measured. Results: We identified an early immune module composed of the IFN-inducible genes Mx1, OAS1 and IRF1, the serum cytokines IL-15, IL-6, TNF-α and IFN-γ and the chemokines IP-10, MCP-1 and MIG, induced 1 day post second and third BNT162b2 vaccine doses, strongly correlating with magnitude of humoral response to vaccination in healthy and MS vaccinees. Moreover, induction of the early immune module was dramatically affected in pwMS treated with fingolimod and ocrelizumab, both groups unable to induce a protective humoral response to COVID-19 vaccine. Conclusion: Overall, this study suggests that the vaccine-induced early regulation of innate immunity is mediated by IFN signalling, impacts on the magnitude of adaptive responses and it might be indicative of vaccine-induced humoral protection.

8.
NPJ Parkinsons Dis ; 9(1): 25, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36781876

RESUMEN

Neurological manifestations are common in COVID-19, the disease caused by SARS-CoV-2. Despite reports of SARS-CoV-2 detection in the brain and cerebrospinal fluid of COVID-19 patients, it is still unclear whether the virus can infect the central nervous system, and which neuropathological alterations can be ascribed to viral tropism, rather than immune-mediated mechanisms. Here, we assess neuropathological alterations in 24 COVID-19 patients and 18 matched controls who died due to pneumonia/respiratory failure. Aside from a wide spectrum of neuropathological alterations, SARS-CoV-2-immunoreactive neurons were detected in the dorsal medulla and in the substantia nigra of five COVID-19 subjects. Viral RNA was also detected by real-time RT-PCR. Quantification of reactive microglia revealed an anatomically segregated pattern of inflammation within affected brainstem regions, and was higher when compared to controls. While the results of this study support the neuroinvasive potential of SARS-CoV-2 and characterize the role of brainstem inflammation in COVID-19, its potential implications for neurodegeneration, especially in Parkinson's disease, require further investigations.

9.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36499693

RESUMEN

Merkel cell carcinoma (MCC) is a rare and aggressive cutaneous malignant tumor with neuroendocrine differentiation, with a rapidly growing incidence rate, high risk of recurrence, and aggressive behavior. The available therapeutic options for advanced disease are limited and there is a pressing need for new treatments. Tumors harboring fusions involving one of the neurotrophin receptor tyrosine kinase (NTRK) genes are now actionable with targeted inhibitors. NTRK-fused genes have been identified in neuroendocrine tumors of other sites; thus, a series of 76 MCCs were firstly analyzed with pan-TRK immunohistochemistry and the positive ones with real-time RT-PCR, RNA-based NGS, and FISH to detect the eventual underlying gene fusion. Despite 34 MCCs showing pan-TRK expression, NTRK fusions were not found in any cases. As in other tumors with neural differentiation, TRK expression seems to be physiological and not caused by gene fusions.


Asunto(s)
Carcinoma de Células de Merkel , Neoplasias , Neoplasias Cutáneas , Humanos , Receptor trkA/genética , Carcinoma de Células de Merkel/genética , Factores de Crecimiento Nervioso/uso terapéutico , Receptor trkC/genética , Neoplasias/patología , Neoplasias Cutáneas/genética , Proteínas de Fusión Oncogénica/genética , Biomarcadores de Tumor/genética
10.
J Travel Med ; 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36331269

RESUMEN

BACKGROUND: A new strain of WNV lineage 1 (WNV - 1) emerged in the Veneto Region, northern Italy, in 2021, eight years after the last outbreak of WNV - 1 in Italy. The virus, which co-circulates with WNV-2, has become endemic in the Region, where, in 2022, most human cases of neuroinvasive disease (WNND) reported in Europe have occurred. METHODS: Comparative analysis of the epidemiology and clinical presentation of WNV-1 and WNV-2 infection in humans, as well as the temporal and geographic distribution of WNV-1 and WNV-2 among wild birds and Culex pipiens mosquitoes in Veneto, from May 16th to August 21st, 2022, to determine if the high number of WNND cases was associated with WNV-1. RESULTS: As of August 21st, 2022, 222 human cases of WNV infection were confirmed by molecular testing, including 103 with fever (WNF) and 119 with WNND. WNV lineage was determined in 201 (90.5%) cases, comprising 138 WNV-1 and 63 WNV-2 infections. During the same period, 35 blood donors tested positive, including 30 in whom WNV lineage was determined (13 WNV-1 and 17 WNV-2). Comparative analysis of the distribution of WNV-1 and WNV-2 infections among WNND cases, WNF cases and WNV-positive blood donors showed that patients with WNND were more likely to have WNV-1 infection than blood donors (odds ratio 3.44; 95% CI 95% 1.54 to 8.24; p = 0.0043). As observed in humans, in wild birds WNV-1 had higher infectious rate (IR) and showed a more rapid expansion than WNV-2. At variance, the distribution of the two lineages was more even in mosquitoes, but with a trend of rapid increase of WNV-1 IR over WNV-2. CONCLUSIONS: Comparative analysis of WNV-1 vs WNV-2 infection in humans, wild birds, and mosquitos showed a rapid expansion of WNV-1 and suggested that WNV-1 infected patients might have an increased risk to develop severe disease.

11.
Front Immunol ; 13: 968991, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032130

RESUMEN

Background: SARS-CoV-2 induces a spectrum of clinical conditions ranging from asymptomatic infection to life threatening severe disease. Host microRNAs have been involved in the cytokine storm driven by SARS-CoV-2 infection and proposed as candidate biomarkers for COVID-19. Methods: To discover signatures of circulating miRNAs associated with COVID-19, disease severity and mortality, small RNA-sequencing was performed on serum samples collected from 89 COVID-19 patients (34 severe, 29 moderate, 26 mild) at hospital admission and from 45 healthy controls (HC). To search for possible sources of miRNAs, investigation of differentially expressed (DE) miRNAs in relevant human cell types in vitro. Results: COVID-19 patients showed upregulation of miRNAs associated with lung disease, vascular damage and inflammation and downregulation of miRNAs that inhibit pro-inflammatory cytokines and chemokines, angiogenesis, and stress response. Compared with mild/moderate disease, patients with severe COVID-19 had a miRNA signature indicating a profound impairment of innate and adaptive immune responses, inflammation, lung fibrosis and heart failure. A subset of the DE miRNAs predicted mortality. In particular, a combination of high serum miR-22-3p and miR-21-5p, which target antiviral response genes, and low miR-224-5p and miR-155-5p, targeting pro-inflammatory factors, discriminated severe from mild/moderate COVID-19 (AUROC 0.88, 95% CI 0.80-0.95, p<0.0001), while high leukocyte count and low levels of miR-1-3p, miR-23b-3p, miR-141-3p, miR-155-5p and miR-4433b-5p predicted mortality with high sensitivity and specificity (AUROC 0.95, 95% CI 0.89-1.00, p<0.0001). In vitro experiments showed that some of the DE miRNAs were modulated directly by SARS-CoV-2 infection in permissive lung epithelial cells. Conclusions: We discovered circulating miRNAs associated with COVID-19 severity and mortality. The identified DE miRNAs provided clues on COVID-19 pathogenesis, highlighting signatures of impaired interferon and antiviral responses, inflammation, organ damage and cardiovascular failure as associated with severe disease and death.


Asunto(s)
COVID-19 , MicroARN Circulante , MicroARNs , Antivirales , Humanos , Inflamación , SARS-CoV-2 , Índice de Severidad de la Enfermedad
12.
Euro Surveill ; 27(29)2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35866436

RESUMEN

In spring 2022, Europe faced an unprecedented heatwave, increasing the risk of West Nile virus (WNV) outbreaks. As early as 7 June 2022, WNV was detected in Culex mosquitoes in northern Italy, and - in the following days - in two blood donors, a patient with encephalitis, wild birds and additional mosquito pools. Genome sequencing demonstrated co-circulation of WNV lineage 2 and a newly introduced WNV lineage 1, which was discovered in the region in 2021.


Asunto(s)
Culex , Culicidae , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Brotes de Enfermedades , Humanos , Italia/epidemiología , Estaciones del Año , Fiebre del Nilo Occidental/diagnóstico , Fiebre del Nilo Occidental/epidemiología , Virus del Nilo Occidental/genética
14.
Transbound Emerg Dis ; 69(5): 2779-2787, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34919790

RESUMEN

West Nile virus (WNV) and Usutu virus (USUV) are mosquito-borne viruses that belong to the Japanese encephalitis virus serocomplex within the genus Flavivirus. Due to climate change and the expansion of mosquito vectors, flaviviruses are becoming endemic in increasing numbers of countries. WNV infections are reported with symptoms ranging from mild fever to severe neuro-invasive disease. Until now, only a few USUV infections have been reported in humans, mostly with mild symptoms. The serological diagnosis and differentiation between flavivirus infections, in general, and between WNV and USUV, in particular, are challenging due to the high degree of cross-reacting antibodies, especially of those directed against the conserved fusion loop (FL) domain of the envelope (E) protein. We have previously shown that E proteins containing four amino-acid mutations in and near the FL strongly reduce the binding of cross-reactive antibodies leading to diagnostic technologies with improved specificities. Here, we expanded the technology to USUV and analyzed the differentiation of USUV- and WNV-induced antibodies in humans. IgG ELISAs modified by an additional competition step with the heterologous antigen resulted in overall specificities of 93.94% for WNV Equad and 92.75% for USUV Equad. IgM antibodies against WNV could be differentiated from USUV IgM in a direct comparison using both antigens. The data indicate the potential of the system to diagnose antigenically closely related flavivirus infections.


Asunto(s)
Infecciones por Flavivirus , Flavivirus , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Anticuerpos Antivirales , Antígenos Heterófilos , Epítopos , Flavivirus/genética , Infecciones por Flavivirus/diagnóstico , Infecciones por Flavivirus/epidemiología , Infecciones por Flavivirus/veterinaria , Humanos , Inmunoglobulina G , Inmunoglobulina M , Fiebre del Nilo Occidental/diagnóstico , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/veterinaria , Virus del Nilo Occidental/genética
15.
Front Immunol ; 12: 736529, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34764954

RESUMEN

Various authors have hypothesized carotid body (CB) involvement in Coronavirus Disease 2019 (COVID-19), through direct invasion or indirect effects by systemic stimuli ('cytokine storm', angiotensin-converting enzyme [ACE]1/ACE2 imbalance). However, empirical evidence is limited or partial. Here, we present an integrated histopathological and virological analysis of CBs sampled at autopsy from four subjects (2 males and 2 females; age: >70 years old) who died of COVID-19. Histopathological, immunohistochemical and molecular investigation techniques were employed to characterize Severe Acute Respiratory Syndrome - Coronavirus 2 (SARS-CoV2) viral invasion and inflammatory reaction. SARS-CoV2 RNA was detected in the CBs of three cases through Real-Time Reverse Transcription Polymerase Chain Reaction (RT-PCR). In these cases, positive immunostaining for Nucleocapsid and Spike protein were also demonstrated, mainly at the level of large roundish cells consistent with type I cells, confirming direct CB invasion. In these cases, T lymphocytes showed focal aggregations in the CBs, suggestive of local inflammatory reaction. Blood congestion and microthrombosis were also found in one of the positive cases. Intriguingly, microthrombosis, blood congestion and microhaemorrages were also bilaterally detected in the CBs of the negative case, supporting the possibility of COVID-19 effects on the CB even in the absence of its direct invasion. SARS-CoV-2 direct invasion of the CB is confirmed through both immunohistochemistry and RT-PCR, with likely involvement of different cell types. We also reported histopathological findings which could be ascribed to local and/or systemic actions of SARS-CoV-2 and which could potentially affect chemoreception.


Asunto(s)
COVID-19 , Cuerpo Carotídeo , SARS-CoV-2 , Anciano , Autopsia , COVID-19/patología , COVID-19/virología , Cuerpo Carotídeo/patología , Cuerpo Carotídeo/virología , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Femenino , Humanos , Masculino , Fosfoproteínas/metabolismo , ARN Viral/análisis , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
16.
PLoS Pathog ; 17(9): e1009878, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34473805

RESUMEN

SARS-CoV-2 fine-tunes the interferon (IFN)-induced antiviral responses, which play a key role in preventing coronavirus disease 2019 (COVID-19) progression. Indeed, critically ill patients show an impaired type I IFN response accompanied by elevated inflammatory cytokine and chemokine levels, responsible for cell and tissue damage and associated multi-organ failure. Here, the early interaction between SARS-CoV-2 and immune cells was investigated by interrogating an in vitro human peripheral blood mononuclear cell (PBMC)-based experimental model. We found that, even in absence of a productive viral replication, the virus mediates a vigorous TLR7/8-dependent production of both type I and III IFNs and inflammatory cytokines and chemokines, known to contribute to the cytokine storm observed in COVID-19. Interestingly, we observed how virus-induced type I IFN secreted by PBMC enhances anti-viral response in infected lung epithelial cells, thus, inhibiting viral replication. This type I IFN was released by plasmacytoid dendritic cells (pDC) via an ACE-2-indipendent but Neuropilin-1-dependent mechanism. Viral sensing regulates pDC phenotype by inducing cell surface expression of PD-L1 marker, a feature of type I IFN producing cells. Coherently to what observed in vitro, asymptomatic SARS-CoV-2 infected subjects displayed a similar pDC phenotype associated to a very high serum type I IFN level and induction of anti-viral IFN-stimulated genes in PBMC. Conversely, hospitalized patients with severe COVID-19 display very low frequency of circulating pDC with an inflammatory phenotype and high levels of chemokines and pro-inflammatory cytokines in serum. This study further shed light on the early events resulting from the interaction between SARS-CoV-2 and immune cells occurring in vitro and confirmed ex vivo. These observations can improve our understanding on the contribution of pDC/type I IFN axis in the regulation of the anti-viral state in asymptomatic and severe COVID-19 patients.


Asunto(s)
COVID-19/inmunología , Células Dendríticas/clasificación , Interferón Tipo I/metabolismo , SARS-CoV-2/inmunología , Adulto , Anciano de 80 o más Años , Infecciones Asintomáticas , Línea Celular Tumoral , Células Dendríticas/inmunología , Células Dendríticas/virología , Células Epiteliales/citología , Femenino , Hospitalización , Humanos , Interferón Tipo I/inmunología , Pulmón/citología , Masculino , Persona de Mediana Edad , Neuropilina-1/metabolismo , Fenotipo , Índice de Severidad de la Enfermedad , Receptor Toll-Like 7/metabolismo
17.
J Travel Med ; 28(8)2021 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-34409443

RESUMEN

BACKGROUND: In August 2020, in the context of COVID-19 pandemics, an autochthonous dengue outbreak was identified for the first time in Italy. METHODS: Following the reporting of the index case of autochthonous dengue, epidemiological investigation, vector control and substances of human origin safety measures were immediately activated, according to the national arbovirus surveillance plan. Dengue cases were followed-up with weekly visits and laboratory tests until recovery and clearance of viral RNA from blood. RESULTS: The primary dengue case was identified in a young woman, who developed fever after returning from Indonesia to northern Italy, on 27 July 2020. She spent the mandatory quarantine for COVID-19 at home with relatives, six of whom developed dengue within two weeks. Epidemiological investigation identified further five autochthonous dengue cases among people who lived or stayed near the residence of the primary case. The last case of the outbreak developed fever on 29 September 2020. Dengue cases had a mild febrile illness, except one with persistent asthenia and myalgia. DENV-1 RNA was detected in blood and/or urine in all autochthonous cases, up to 35 days after fever onset. All cases developed IgM and IgG antibodies which cross-reacted with West Nile virus (WNV) and other flaviviruses. Sequencing of the full viral genome from blood samples showed over 99% nucleotide identity with DENV-1 strains isolated in China in 2014-2015; phylogenetic analysis classified the virus within Genotype I. Entomological site inspection identified a high density of Aedes albopictus mosquitoes, which conceivably sustained local DENV-1 transmission. Aedes koreicus mosquitoes were also collected in the site. CONCLUSIONS: Areas in Europe with high density of Aedes mosquitoes should be considered at risk for dengue transmission. The presence of endemic flaviviruses, such as WNV, might pose problems in the laboratory diagnosis.


Asunto(s)
Aedes , COVID-19 , Virus del Dengue , Dengue , Animales , Dengue/epidemiología , Virus del Dengue/genética , Brotes de Enfermedades , Femenino , Humanos , Italia/epidemiología , Mosquitos Vectores , Filogenia , SARS-CoV-2
18.
Front Immunol ; 12: 676828, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34290701

RESUMEN

In coronavirus disease 2019 (COVID-19), ulcerative lesions have been episodically reported in various segments of the gastrointestinal (GI) tract, including the oral cavity, oropharynx, esophagus, stomach and bowel. In this report, we describe an autopsy case of a COVID-19 patient who showed two undiagnosed ulcers at the level of the anterior and posterior walls of the hypopharynx. Molecular testing of viruses involved in pharyngeal ulcers demonstrated the presence of severe acute respiratory syndrome - coronavirus type 2 (SARS-CoV-2) RNA, together with herpes simplex virus 1 DNA. Histopathologic analysis demonstrated full-thickness lympho-monocytic infiltration (mainly composed of CD68-positive cells), with hemorrhagic foci and necrosis of both the mucosal layer and deep skeletal muscle fibers. Fibrin and platelet microthrombi were also found. Cytological signs of HSV-1 induced damage were not found. Cells expressing SARS-CoV-2 spike subunit 1 were immunohistochemically identified in the inflammatory infiltrations. Immunohistochemistry for HSV1 showed general negativity for inflammatory infiltration, although in the presence of some positive cells. Thus, histopathological, immunohistochemical and molecular findings supported a direct role by SARS-CoV-2 in producing local ulcerative damage, although a possible contributory role by HSV-1 reactivation cannot be excluded. From a clinical perspective, this autopsy report of two undiagnosed lesions put the question if ulcers along the GI tract could be more common (but frequently neglected) in COVID-19 patients.


Asunto(s)
COVID-19/complicaciones , Hipofaringe/patología , SARS-CoV-2/aislamiento & purificación , Úlcera/patología , Anciano , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Autopsia , Plaquetas/metabolismo , Plaquetas/patología , COVID-19/mortalidad , COVID-19/patología , COVID-19/fisiopatología , Tracto Gastrointestinal/patología , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/aislamiento & purificación , Humanos , Hipofaringe/virología , Inmunohistoquímica , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/virología , Linfocitos/metabolismo , Monocitos/metabolismo , Membrana Mucosa/patología , Músculo Esquelético/patología , Necrosis/patología , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Trombosis/patología , Úlcera/virología
19.
Viruses ; 13(3)2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807957

RESUMEN

Although antibody levels progressively decrease following SARS-CoV-2 infection, the immune memory persists for months. Thus, individuals who naturally contracted SARS-CoV-2 are expected to develop a more rapid and sustained response to COVID-19 vaccines than naïve individuals. In this study, we analyzed the dynamics of the antibody response to the BNT162b2 mRNA COVID-19 vaccine in six healthcare workers who contracted SARS-CoV-2 in March 2020, in comparison to nine control subjects without a previous infection. The vaccine was well tolerated by both groups, with no significant difference in the frequency of vaccine-associated side effects, with the exception of local pain, which was more common in previously infected subjects. Overall, the titers of neutralizing antibodies were markedly higher in response to the vaccine than after natural infection. In all subjects with pre-existing immunity, a rapid increase in anti-spike receptor-binding domain (RBD) IgG antibodies and neutralizing antibody titers was observed one week after the first dose, which seemed to act as a booster. Notably, in previously infected individuals, neutralizing antibody titers 7 days after the first vaccine dose were not significantly different from those observed in naïve subjects 7 days after the second vaccine dose. These results suggest that, in previously infected people, a single dose of the vaccine might be sufficient to induce an effective response.


Asunto(s)
Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , ARN Mensajero/inmunología , ARN Viral/inmunología , SARS-CoV-2/inmunología , Adulto , Formación de Anticuerpos , Vacuna BNT162 , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/genética , Femenino , Humanos , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , ARN Mensajero/administración & dosificación , ARN Mensajero/genética , ARN Viral/administración & dosificación , ARN Viral/genética , SARS-CoV-2/genética
20.
Int J Mol Sci ; 22(5)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652988

RESUMEN

In this Review, we briefly describe the basic virology and pathogenesis of SARS-CoV-2, highlighting how stem cell technology and organoids can contribute to the understanding of SARS-CoV-2 cell tropisms and the mechanism of disease in the human host, supporting and clarifying findings from clinical studies in infected individuals. We summarize here the results of studies, which used these technologies to investigate SARS-CoV-2 pathogenesis in different organs. Studies with in vitro models of lung epithelia showed that alveolar epithelial type II cells, but not differentiated lung alveolar epithelial type I cells, are key targets of SARS-CoV-2, which triggers cell apoptosis and inflammation, while impairing surfactant production. Experiments with human small intestinal organoids and colonic organoids showed that the gastrointestinal tract is another relevant target for SARS-CoV-2. The virus can infect and replicate in enterocytes and cholangiocytes, inducing cell damage and inflammation. Direct viral damage was also demonstrated in in vitro models of human cardiomyocytes and choroid plexus epithelial cells. At variance, endothelial cells and neurons are poorly susceptible to viral infection, thus supporting the hypothesis that neurological symptoms and vascular damage result from the indirect effects of systemic inflammatory and immunological hyper-responses to SARS-CoV-2 infection.


Asunto(s)
COVID-19/patología , Organoides/virología , SARS-CoV-2/fisiología , Células Madre/virología , Animales , Apoptosis , COVID-19/virología , Sistema Cardiovascular/citología , Sistema Cardiovascular/patología , Sistema Cardiovascular/virología , Sistema Nervioso Central/citología , Sistema Nervioso Central/patología , Sistema Nervioso Central/virología , Tracto Gastrointestinal/citología , Tracto Gastrointestinal/patología , Tracto Gastrointestinal/virología , Humanos , Inflamación/patología , Inflamación/virología , Pulmón/citología , Pulmón/patología , Pulmón/virología , Organoides/patología , Células Madre/patología , Tropismo Viral , Internalización del Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...