Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
3.
Brain Stimul ; 15(2): 523-531, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35337598

RESUMEN

BACKGROUND: Transcranial magnetic stimulation (TMS) is widely used in brain research and treatment of various brain dysfunctions. However, the optimal way to target stimulation and administer TMS therapies, for example, where and in which electric field direction the stimuli should be given, is yet to be determined. OBJECTIVE: To develop an automated closed-loop system for adjusting TMS parameters (in this work, the stimulus orientation) online based on TMS-evoked brain activity measured with electroencephalography (EEG). METHODS: We developed an automated closed-loop TMS-EEG set-up. In this set-up, the stimulus parameters are electronically adjusted with multi-locus TMS. As a proof of concept, we developed an algorithm that automatically optimizes the stimulation orientation based on single-trial EEG responses. We applied the algorithm to determine the electric field orientation that maximizes the amplitude of the TMS-EEG responses. The validation of the algorithm was performed with six healthy volunteers, repeating the search twenty times for each subject. RESULTS: The validation demonstrated that the closed-loop control worked as desired despite the large variation in the single-trial EEG responses. We were often able to get close to the orientation that maximizes the EEG amplitude with only a few tens of pulses. CONCLUSION: Optimizing stimulation with EEG feedback in a closed-loop manner is feasible and enables effective coupling to brain activity.


Asunto(s)
Electroencefalografía , Estimulación Magnética Transcraneal , Encéfalo/fisiología , Mapeo Encefálico , Retroalimentación , Humanos
4.
Brain Stimul ; 15(1): 116-124, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34818580

RESUMEN

BACKGROUND: Transcranial magnetic stimulation (TMS) allows non-invasive stimulation of the cortex. In multi-locus TMS (mTMS), the stimulating electric field (E-field) is controlled electronically without coil movement by adjusting currents in the coils of a transducer. OBJECTIVE: To develop an mTMS system that allows adjusting the location and orientation of the E-field maximum within a cortical region. METHODS: We designed and manufactured a planar 5-coil mTMS transducer to allow controlling the maximum of the induced E-field within a cortical region approximately 30 mm in diameter. We developed electronics with a design consisting of independently controlled H-bridge circuits to drive up to six TMS coils. To control the hardware, we programmed software that runs on a field-programmable gate array and a computer. To induce the desired E-field in the cortex, we developed an optimization method to calculate the currents needed in the coils. We characterized the mTMS system and conducted a proof-of-concept motor-mapping experiment on a healthy volunteer. In the motor mapping, we kept the transducer placement fixed while electronically shifting the E-field maximum on the precentral gyrus and measuring electromyography from the contralateral hand. RESULTS: The transducer consists of an oval coil, two figure-of-eight coils, and two four-leaf-clover coils stacked on top of each other. The technical characterization indicated that the mTMS system performs as designed. The measured motor evoked potential amplitudes varied consistently as a function of the location of the E-field maximum. CONCLUSION: The developed mTMS system enables electronically targeted brain stimulation within a cortical region.


Asunto(s)
Corteza Motora , Estimulación Magnética Transcraneal , Electromiografía/métodos , Potenciales Evocados Motores , Humanos , Corteza Motora/fisiología , Técnicas Estereotáxicas , Estimulación Magnética Transcraneal/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...