Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 15: 1379109, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737557

RESUMEN

Introduction: The impact of the obesity pandemic on female reproductive capability is a factor that needs to be investigated. In addition, the link between endometrial thickness and in vitro fertilization (IVF) outcomes is contentious. Goal: Our goal was to analyze the association among endometrium development, hormone levels, embryo quality, clinical pregnancy, anamnestic parameters, and body mass index (BMI) in women receiving IVF treatment. Patients and methods: 537 participants undergoing IVF/ICSI cycles with successful oocyte retrieval were enrolled. Subjects were divided into four BMI based groups: underweight (UW; n=32), normal weight (NW; n=324), overweight (OW; n= 115), obesity (OB; n=66). Anthropometric and anamnestic parameters, characteristics of stimulation, endometrial thickness on the day of hCG injection, at puncture, at embryo transfer, FSH, LH, AMH, partner's age and the semen analysis indicators, embryo quality, clinical pregnancy, were recorded and analyzed. Support Vector Machine (SVM) was built to predict potential pregnancies based on medical data using 22 dimensions. Results: In accordance with BMI categories, when examining pregnant/non-pregnant division, the average age of pregnant women was significantly lower in the UW (30.9 ± 4.48 vs. 35.3 ± 5.49 years, p=0.022), NW (34.2 ± 4.25 vs. 36.3 ± 4.84 years, p<0.001), and OW (33.8 ± 4.89 vs. 36.3 ± 5.31 years, p=0.009) groups. Considering FSH, LH, and AMH levels in each BMI category, a statistically significant difference was observed only in the NW category FSH was significantly lower (7.8 ± 2.99 vs. 8.6 ± 3.50 IU/L, p=0.032) and AMH (2.87 ± 2.40 vs. 2.28 ± 2.01 pmol/L, p=0.021) was higher in pregnant women. There were no further statistically significant differences observed between the pregnant and non-pregnant groups across any BMI categories, especially concerning endometrial development. Surprisingly, BMI and weight correlated negatively with FSH (r=-0.252, p<0.001; r=-0.206, p<0.001, respectively) and LH (r= -0.213, p<0.001; r= -0.195, p<0.001) in the whole population. SVM model average accuracy on predictions was 61.71%. Discussion: A convincing correlation between endometrial thickness development and patients' BMI could not be substantiated. However, FSH and LH levels exhibited a surprising decreasing trend with increasing BMI, supporting the evolutionary selective role of nutritional status. Our SVM model outperforms previous models; however, to confidently predict the outcome of embryo transfer, further optimization is necessary.


Asunto(s)
Índice de Masa Corporal , Endometrio , Fertilización In Vitro , Índice de Embarazo , Humanos , Femenino , Fertilización In Vitro/métodos , Embarazo , Adulto , Endometrio/patología , Pronóstico , Obesidad , Infertilidad Femenina/terapia , Transferencia de Embrión/métodos , Inyecciones de Esperma Intracitoplasmáticas , Delgadez
2.
Mol Reprod Dev ; 91(5): e23745, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38785179

RESUMEN

Seminal fluid protein composition is complex and commonly assumed to be rapidly divergent due to functional interactions with both sperm and the female reproductive tract (FRT), both of which evolve rapidly. In addition to sperm, seminal fluid may contain structures, such as mating plugs and spermatophores. Here, we investigate the evolutionary diversification of a lesser-known ejaculate structure: the spermatostyle, which has independently arisen in several families of beetles and true bugs. We characterized the spermatostyle proteome, in addition to spermatostyle and FRT morphology, in six species of whirligig beetles (family Gyrinidae). Spermatostyles were enriched for proteolytic enzymes, and assays confirmed they possess proteolytic activity. Sperm-leucylaminopeptidases (S-LAPs) were particularly abundant, and their localization to spermatostyles was confirmed by immunohistochemistry. Although there was evidence for functional conservation of spermatostyle proteomes across species, phylogenetic regressions suggest evolutionary covariation between protein composition and the morphology of both spermatostyles and FRTs. We postulate that S-LAPs (and other proteases) have evolved a novel structural role in spermatostyles and discuss spermatostyles as adaptations for delivering male-derived materials to females.


Asunto(s)
Escarabajos , Proteoma , Animales , Escarabajos/metabolismo , Masculino , Proteoma/metabolismo , Proteoma/análisis , Femenino , Proteómica/métodos , Filogenia , Proteínas de Insectos/metabolismo , Proteínas de Insectos/análisis , Espermatozoides/metabolismo
3.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612789

RESUMEN

Numerous diseases can arise as a consequence of mitochondrial malfunction. Hence, there is a significant focus on studying the role of mitochondria in cancer, ageing, neurodegenerative diseases, and the field of developmental biology. Mitochondria could exist as discrete organelles in the cell; however, they have the ability to fuse, resulting in the formation of interconnected reticular structures. The dynamic changes between these forms correlate with mitochondrial function and mitochondrial health, and consequently, there is a significant scientific interest in uncovering the specific molecular constituents that govern these transitions. Moreover, the specialized mitochondria display a wide array of variable morphologies in their cristae formations. These inner mitochondrial structures are closely associated with the specific functions performed by the mitochondria. In multiple cases, the presence of mitochondrial dysfunction has been linked to male sterility, as it has been observed to cause a range of abnormal spermatogenesis and sperm phenotypes in different species. This review aims to elucidate the dynamic alterations and functions of mitochondria in germ cell development during the spermatogenesis of Drosophila melanogaster.


Asunto(s)
Drosophila melanogaster , Semen , Masculino , Animales , Mitocondrias , Espermatogénesis , Espermatozoides
4.
Front Cell Dev Biol ; 11: 1281487, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38020911

RESUMEN

Glutamate dehydrogenases are enzymes that take part in both amino acid and energy metabolism. Their role is clear in many biological processes, from neuronal function to cancer development. The putative testis-specific Drosophila glutamate dehydrogenase, Bb8, is required for male fertility and the development of mitochondrial derivatives in spermatids. Testis-specific genes are less conserved and could gain new functions, thus raising a question whether Bb8 has retained its original enzymatic activity. We show that while Bb8 displays glutamate dehydrogenase activity, there are significant functional differences between the housekeeping Gdh and the testis-specific Bb8. Both human GLUD1 and GLUD2 can rescue the bb8 ms mutant phenotype, with superior performance by GLUD2. We also tested the role of three conserved amino acids observed in both Bb8 and GLUD2 in Gdh mutants, which showed their importance in the glutamate dehydrogenase function. The findings of our study indicate that Drosophila Bb8 and human GLUD2 could be novel examples of convergent molecular evolution. Furthermore, we investigated the importance of glutamate levels in mitochondrial homeostasis during spermatogenesis by ectopic expression of the mitochondrial glutamate transporter Aralar1, which caused mitochondrial abnormalities in fly spermatids. The data presented in our study offer evidence supporting the significant involvement of glutamate metabolism in sperm development.

5.
Int J Biol Macromol ; 253(Pt 5): 127157, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37778576

RESUMEN

The rotifer-specific biopolymer, namely Rotimer, is a recently discovered group of the biomolecule family. Rotimer has an active role in the biofilm formation initiated by rotifers (e.g., Euchlanis dilatata or Adineta vaga) or in the female-male sexual interaction of monogononts. To understand the Ca2+- and polarity-dependent formation of this multifunctional viscoelastic material, it is essential to explore its molecular composition. The investigation of the rotifer-enhanced biofilm and Rotimer-inductor conglomerate (RIC) formation yielded several protein candidates to predict the Rotimer-specific main components. The exudate of E. dilatata males was primarily applied from different biopolimer-containing samples (biofilm or RIC). The advantage of males over females lies in their degenerated digestive system and simple anatomy. Thus, their exudate is less contaminated with food and endosymbiont elements. The sequenced and annotated genome and transcriptome of this species opened the way for identifying Rotimer proteins by mass spectrometry. The predicted rotifer-biopolymer forming components are SCO-spondins and 14-3-3 protein. The characteristics of Rotimer are similar to Reissner's fiber, which is found in the central nervous system of vertebrates and is mainly formed from SCO-spondins. This molecular information serves as a starting point for its interdisciplinary investigation and application in biotechnology, biomedicine, or neurodegeneration-related drug development.


Asunto(s)
Sistema Nervioso Central , Vertebrados , Animales , Femenino , Masculino , Secuencia de Bases
6.
Cells ; 12(18)2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37759442

RESUMEN

Genome stability in human cells relies on the efficient repair of double-stranded DNA breaks, which is mainly achieved by homologous recombination (HR). Among the regulators of various cellular functions, Protein phosphatase 4 (PP4) plays a pivotal role in coordinating cellular response to DNA damage. Meanwhile, Centrobin (CNTRB), initially recognized for its association with centrosomal function and microtubule dynamics, has sparked interest due to its potential contribution to DNA repair processes. In this study, we investigate the involvement of PP4 and its interaction with CNTRB in HR-mediated DNA repair in human cells. Employing a range of experimental strategies, we investigate the physical interaction between PP4 and CNTRB and shed light on the importance of two specific motifs in CNTRB, the PP4-binding FRVP and the ATR kinase recognition SQ sequences, in the DNA repair process. Moreover, we examine cells depleted of PP4 or CNTRB and cells harboring FRVP and SQ mutations in CNTRB, which result in similar abnormal chromosome morphologies. This phenomenon likely results from the impaired resolution of Holliday junctions, which serve as crucial intermediates in HR. Taken together, our results provide new insights into the intricate mechanisms of PP4 and CNTRB-regulated HR repair and their interrelation.


Asunto(s)
Reparación del ADN , Fosfoproteínas Fosfatasas , Humanos , Fosfoproteínas Fosfatasas/genética , Reparación del ADN por Recombinación , Daño del ADN
7.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768356

RESUMEN

The conserved Ser/Thr protein phosphatase 5 (PP5) is involved in the regulation of key cellular processes, including DNA damage repair and cell division in eukaryotes. As a co-chaperone of Hsp90, PP5 has been shown to modulate the maturation and activity of numerous oncogenic kinases. Here, we identify a novel substrate of PP5, the Polo-like kinase 4 (Plk4), which is the master regulator of centriole duplication in animal cells. We show that PP5 specifically interacts with Plk4, and is able to dephosphorylate the kinase in vitro and in vivo, which affects the interaction of Plk4 with its partner proteins. In addition, we provide evidence that PP5 and Plk4 co-localize to the centrosomes in Drosophila embryos and cultured cells. We demonstrate that PP5 is not essential; the null mutant flies are viable without a severe mitotic phenotype; however, its loss significantly reduces the fertility of the animals. Our results suggest that PP5 is a novel regulator of the Plk4 kinase in Drosophila.


Asunto(s)
Centriolos , Centrosoma , Animales , Centriolos/metabolismo , Centrosoma/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Drosophila/genética , Drosophila/metabolismo
8.
mBio ; 14(1): e0338622, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36625576

RESUMEN

Mucormycosis is an invasive fungal infection caused by certain members of the fungal order of Mucorales. The species most frequently identified as the etiological agents of mucormycosis belong to the genera Rhizopus, Lichtheimia, and Mucor. The frequency of systemic mucormycosis has been increasing, mainly because of increasing numbers of susceptible patients. Furthermore, Mucorales display intrinsic resistance to the majority of routinely used antifungal agents (e.g., echinocandins and short-tailed azoles), which limits the number of possible therapeutic options. All the above-mentioned issues urge the improvement of molecular identification methods and the discovery of new antifungal targets and strategies. Spore coat proteins (CotH) constitute a kinase family present in many pathogenic bacteria and fungi and participate in the spore formation in these organisms. Moreover, some of them can act as virulence factors being receptors of the human GRP78 protein during Rhizopus delemar-induced mucormycosis. We identified 17 cotH-like genes in the Mucor lusitanicus genome database. Successful disruption of five cotH genes in Mucor was performed using the CRISPR-Cas9 system. The CotH3 and CotH4 proteins play a role in adaptation to different temperatures as well as in developing the cell wall structure. We also show CotH4 protein is involved in spore wall formation by affecting the total chitin content and, thus, the composition of the spore wall. The role of CotH3 and CotH4 proteins in virulence was confirmed in two invertebrate models and a diabetic ketoacidosis (DKA) mouse model. IMPORTANCE Current treatment options for mucormycosis are inadequate, resulting in high mortality rates, especially among immunosuppressed patients. The development of novel therapies for mucormycosis has been hampered by lack of understanding of the pathogenetic mechanisms. The importance of the cell surface CotH proteins in the pathogenesis of Rhizopus-mediated mucormycosis has been recently described. However, the contribution of this family of proteins to the virulence of other mucoralean fungi and their functionality in vital processes remain undefined. Through the use of the CRISPR-Case9 gene disruption system, we demonstrate the importance of several of the CotH proteins to the virulence of Mucor lusitanicus by using three infection models. We also report on the importance of one of these proteins, CotH4, to spore wall formation by affecting chitin content. Therefore, our studies extend the importance of CotH proteins to Mucor and identify the mechanism by which one of the CotH proteins contributes to the development of a normal fungal cell wall, thereby indicating that this family of proteins can be targeted for future development of novel therapeutic strategies of mucormycosis.


Asunto(s)
Mucorales , Mucormicosis , Animales , Ratones , Humanos , Mucor/genética , Mucormicosis/microbiología , Virulencia/genética , Mucorales/genética , Esporas
9.
Adv Clin Exp Med ; 31(9): 931-935, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36000877

RESUMEN

There are numerous surprising discoveries in current comprehensive biopolymer research, including the description of new types of biopolymers and the extension of their applications. The discovery of a new rotifer-specific biopolymer family (Rotimers) and the exceptional ability of these micrometazoans to inactivate and catabolize human-type neurotoxic aggregates (e.g., beta-amyloids, alpha-synucleins, prions) by their exudates can be mentioned as the original work of our research group. Rotimers are exogenous and protein complex molecules with a calcium-dependent production mechanism in both bdelloid and monogonant rotifers. However, their experimental and application possibilities are still unknown; only part of the class has been explored and described. Current Rotimer-related studies present promising biodiversity and bioactivity of these biomaterials (e.g., antiand disaggregation effects or high degrees of adhesion to other molecules). The primary objective of current research is to explore and develop their application in translational biomedicine. A key area is the design of drug candidates against neurodegeneration-related aggregates based on the molecular information provided by the composition, structure and function of Rotimers. These novel biomaterials have the potential to open new perspectives in the pharmaceutical industry and healthcare.


Asunto(s)
Priones , Rotíferos , Animales , Materiales Biocompatibles , Biopolímeros/metabolismo , Biopolímeros/farmacología , Calcio/metabolismo , Humanos , Priones/metabolismo , Priones/farmacología , Rotíferos/metabolismo , Sinucleínas/metabolismo
10.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35897744

RESUMEN

The dynamic balance of transcriptional and translational regulation together with degron-controlled proteolysis shapes the ever-changing cellular proteome. While a large variety of degradation signals has been characterized, our knowledge of cis-acting protein motifs that can in vivo stabilize otherwise short-lived proteins is very limited. We have identified and characterized a conserved 13-mer protein segment derived from the p54/Rpn10 ubiquitin receptor subunit of the Drosophila 26S proteasome, which fulfills all the characteristics of a protein stabilization motif (STABILON). Attachment of STABILON to various intracellular as well as medically relevant secreted model proteins resulted in a significant increase in their cellular or extracellular concentration in mammalian cells. We demonstrate that STABILON acts as a universal and dual function motif that, on the one hand, increases the concentration of the corresponding mRNAs and, on the other hand, prevents the degradation of short-lived fusion proteins. Therefore, STABILON may lead to a breakthrough in biomedical recombinant protein production.


Asunto(s)
Proteínas de Drosophila , Complejo de la Endopetidasa Proteasomal , Secuencias de Aminoácidos , Animales , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mamíferos/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Ubiquitina/metabolismo
11.
Int J Biol Macromol ; 211: 669-677, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35588974

RESUMEN

The rotifer-specific exogenic biopolymer, named Rotimer and its related molecular processes are affected by physical and chemical factors (e.g., temperature, pH or metal ions); however, the study of biological influences (e.g., the presence protozoa) concerning the particle-dependent reproduction (egg laying) and 'biopolymer producing capacity' (BPC) of rotifers is the objective of the present work. Non-planktonic rotifer species (Philodina acuticornis, Adineta vaga, Euchlanis dilatata, and Lecane bulla) were studied in paired micrometazoa-protozoa co-cultures involving Paramecium, Diplonema, and Amoeba. These protozoa can be beneficial food sources, enhancing reproduction, or even toxic factors for the above-mentioned animals, but can also function as particle-like mechanical stimulators. Furthermore, current studies reveal that bdelloids, similarly to monogonants, produce filamentous exudate; moreover, the body of bdelloids is covered by their exudate, unlike that of monogonants, especially in the case of A. vaga. A mathematical formula was developed as an improved version of a previously published viability marker to characterize the BPC and the relative amount of produced exudate in different conditions. Rotifer species secreting biopolymers appear to be a general trait indicating a common evolutionary background (e.g., calcium- and particle dependency) of such molecules; therefore, the BPC becomes an experiential sublethal influencing marker to these micrometazoans.


Asunto(s)
Rotíferos , Animales , Evolución Biológica , Biopolímeros , Técnicas de Cocultivo , Reproducción
12.
Int J Biol Macromol ; 201: 262-269, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34999044

RESUMEN

Neurodegeneration-related human-type beta-amyloid 1-42 aggregates (H-Aß) are one of the biochemical markers and executive molecules in Alzheimer's disease. The exogenic rotifer-specific biopolymer, namely Rotimer, has a protective effect against H-Aß toxicity on Euchlanis dilatata and Lecane bulla monogonant rotifers. Due to the external particle-dependent secreting activity of these animals, this natural exudate exists in a bound form on the surface of epoxy-metal beads, named as Rotimer Inductor Conglomerate (RIC). In this current work the experiential in vitro molecular interactions between Rotimer and Aßs are presented. The RIC form was uniformly used against H-Aß aggregation processes in stagogram- and fluorescent-based experiments. These well-known cell-toxic aggregates stably and quickly (only taking a few minutes) bind to RIC. The epoxy beads (as carriers) alone or the scrambled version of H-Aß (with random amino acid sequence) were the ineffective and inactive negative controls of this experimental system. The RIC has significant interacting, anti-aggregating and disaggregating effects on H-Aß. To detect these experiments, Bis-ANS and Thioflavin T were applied during amyloid binding, two aggregation-specific functional fluorescent dyes with different molecular characteristics. This newly described empirical interaction of Rotimer with H-Aß is a potential starting point and source of innovation concerning targeted human- and pharmaceutical applications.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Enfermedad de Alzheimer/metabolismo , Amiloide/química , Péptidos beta-Amiloides/metabolismo , Animales , Biopolímeros/farmacología , Colorantes Fluorescentes/farmacología , Humanos
13.
Cells ; 12(1)2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36611818

RESUMEN

The blood cells of the fruit fly Drosophila melanogaster show many similarities to their vertebrate counterparts, both in their functions and their differentiation. In the past decades, a wide palette of immunological and transgenic tools and methods have been developed to study hematopoiesis in the Drosophila larva. However, the in vivo observation of blood cells is technically restricted by the limited transparency of the body and the difficulty in keeping the organism alive during imaging. Here we describe an improved ex vivo culturing method that allows effective visualization and selection of live blood cells in primary cultures derived from Drosophila larvae. Our results show that cultured hemocytes accurately represent morphological and functional changes following immune challenges and in case of genetic alterations. Since cell culturing has hugely contributed to the understanding of the physiological properties of vertebrate blood cells, this method provides a versatile tool for studying Drosophila hemocyte differentiation and functions ex vivo.


Asunto(s)
Drosophila melanogaster , Hematopoyesis , Animales , Drosophila melanogaster/genética , Hematopoyesis/fisiología , Drosophila , Diferenciación Celular , Larva , Hemocitos
14.
Front Cell Dev Biol ; 9: 727264, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34660584

RESUMEN

Microtubule nucleation in eukaryotes is primarily promoted by γ-tubulin and the evolutionary conserved protein complex, γ-Tubulin Ring Complex (γ-TuRC). γ-TuRC is part of the centrosome and basal body, which are the best-known microtubule-organizing centers. Centrosomes undergo intensive and dynamic changes during spermatogenesis, as they turn into basal bodies, a prerequisite for axoneme formation during spermatogenesis. Here we describe the existence of a novel, tissue-specific γ-TuRC in Drosophila. We characterize three genes encoding testis-specific components of γ-TuRC (t-γ-TuRC) and find that presence of t-γ-TuRC is essential to male fertility. We show the diverse subcellular distribution of the t-γ-TuRC proteins during post-meiotic development, at first at the centriole adjunct and then also on the anterior tip of the nucleus, and finally, they appear in the tail region, close to the mitochondria. We also prove the physical interactions between the t-γ-TuRC members, γ-tubulin and Mozart1. Our results further indicate heterogeneity in γ-TuRC composition during spermatogenesis and suggest that the different post-meiotic microtubule organizing centers are orchestrated by testis-specific gene products, including t-γ-TuRC.

15.
Virulence ; 12(1): 2571-2582, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34569900

RESUMEN

Candida infections are the most prevalent cause of serious human mycoses and are the third most common pathogens isolated from bloodstream infections in hospitalized patients. C. parapsilosis is a member of the non-albicans spp., which have a predilection for causing life-threatening disease in neonates and hospitalized pediatric patients. In this study, we utilized a Drosophila melanogaster infection model to analyze the immunological responses to C. parapsilosis. Our results demonstrate that the Toll pathway in Drosophila controls C. parapsilosis proliferation as the Toll signaling mutant MyD88-/- flies are highly susceptible to C. parapsilosis. We also confirmed that the MyD88-/- fly is a convenient invertebrate animal model to analyze virulence properties of different species and strains from the C. parapsilosis sensu lato complex as C. orthopsilosis, C. metapsilosis proved to be less virulent than C. parapsilosis sensu stricto and the N-mannan deficient C. parapsilosis och1Δ/Δ strain showed attenuated pathogenicity in this immunodeficient Drosophila background. We also found that Persephone protease is not required for detection and activation of Toll pathway during C. parapsilosis infection. Furthermore, we observed that Drosophila ß-glucan receptor deficient flies where more sensitive to C. parapsilosis compared to wild-type flies; however, we could not find a clear dependence on the recognition of this receptor and the cell wall ß-glucan exposure-induced host response. These studies establish this D. melanogaster infection model as an efficient tool in deciphering immune responses to C. parapsilosis as well as for assessing virulence factors produced by this emerging fungal predator.


Asunto(s)
Candida parapsilosis , Drosophila melanogaster , Animales , Antifúngicos/farmacología , Candida parapsilosis/genética , Niño , Humanos , Inmunidad , Factor 88 de Diferenciación Mieloide
16.
Sci Rep ; 11(1): 8422, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33875704

RESUMEN

The human orthologue of the tumor suppressor protein FBW7 is encoded by the Drosophila archipelago (ago) gene. Ago is an F-box protein that gives substrate specificity to its SCF ubiquitin ligase complex. It has a central role in multiple biological processes in a tissue-specific manner such as cell proliferation, cellular differentiation, hypoxia-induced gene expression. Here we present a previously unknown tissue-specific role of Ago in spermatid differentiation. We identified a classical mutant of ago which is semi-lethal and male-sterile. During the characterization of ago function in testis, we found that ago plays role in spermatid development, following meiosis. We confirmed spermatogenesis defects by silencing ago by RNAi in testes. The ago mutants show multiple abnormalities in elongating and elongated spermatids, including aberration of the cyst morphology, malformed mitochondrial structures, and individualization defects. Additionally, we determined the subcellular localization of Ago protein with mCherry-Ago transgene in spermatids. Our findings highlight the potential roles of Ago in different cellular processes of spermatogenesis, like spermatid individualization, and regulation of mitochondrial morphology.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Proteínas F-Box , Espermatogénesis/genética , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Diferenciación Celular/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Genes Supresores de Tumor , Infertilidad Masculina/genética , Masculino , Mitocondrias , Mutación , Interferencia de ARN , Espermátides/citología , Testículo/citología , Testículo/metabolismo
17.
FEBS J ; 288(16): 4812-4832, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33606336

RESUMEN

Ezrin-Radixin-Moesin (ERM) proteins play an essential role in the cytoplasm by cross-linking actin filaments with plasma membrane proteins. Research has identified the nuclear localization of ERMs, as well as the involvement of a single Drosophila ERM protein, Moesin, in nuclear mRNA exports. However, the question of how important the nuclear activity of ERM proteins are for the life of an organism has so far not been explored. Here, we present the first attempt to reveal the in vivo relevance of nuclear localization of Moesin in Drosophila. With the help of a nuclear export signal, we decreased the amount of Moesin in the nuclei of the animals. Furthermore, we observed various developmental defects, demonstrating the importance of ERM function in the nucleus for the first time. Transcriptome analysis of the mutant flies revealed that the lack of nuclear Moesin function leads to expression changes in nearly 700 genes, among them heat-shock genes. This result together with additional findings revealed that in Drosophila the expression of protein chaperones requires the nuclear functions of Moesin. DATABASE: GEO accession number: GSE155778.


Asunto(s)
Proteínas de la Membrana/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Núcleo Celular/metabolismo , Drosophila , Regulación de la Expresión Génica/genética , Proteínas de la Membrana/genética
18.
Autophagy ; 17(9): 2565-2575, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33249988

RESUMEN

Yeast Atg8 and its homologs are involved in autophagosome biogenesis in all eukaryotes. These are the most widely used markers for autophagy thanks to the association of their lipidated forms with autophagic membranes. The Atg8 protein family expanded in animals and plants, with most Drosophila species having two Atg8 homologs. In this Brief Report, we use clear-cut genetic analysis in Drosophila melanogaster to show that lipidated Atg8a is required for autophagy, while its non-lipidated form is essential for developmentally programmed larval midgut elimination and viability. In contrast, expression of Atg8b is restricted to the male germline and its loss causes male sterility without affecting autophagy. We find that high expression of non-lipidated Atg8b in the male germline is required for fertility. Consistent with these non-canonical functions of Atg8 proteins, loss of Atg genes required for Atg8 lipidation lead to autophagy defects but do not cause lethality or male sterility.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo
19.
Int J Mol Sci ; 21(10)2020 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-32466287

RESUMEN

Lichtheimia corymbifera is considered as one of the most frequent agents of mucormycosis. The lack of efficient genetic manipulation tools hampers the characterization of the pathomechanisms and virulence factors of this opportunistic pathogenic fungus. Although such techniques have been described for certain species, the performance of targeted mutagenesis and the construction of stable transformants have remained a great challenge in Mucorales fungi. In the present study, a plasmid-free CRISPR-Cas9 system was applied to carry out a targeted gene disruption in L. corymbifera. The described method is based on the non-homologous end-joining repair of the double-strand break caused by the Cas9 enzyme. Using this method, short, one-to-five nucleotide long-targeted deletions could be induced in the orotidine 5'-phosphate decarboxylase gene (pyrG) and, as a result, uracil auxotrophic strains were constructed. These strains are applicable as recipient strains in future gene manipulation studies. As we know, this is the first genetic modification of this clinically relevant fungus.


Asunto(s)
Sistemas CRISPR-Cas , Mucorales/genética , Mutagénesis , Proteínas Fúngicas/genética , Orotidina-5'-Fosfato Descarboxilasa/genética
20.
Genes (Basel) ; 10(3)2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30841641

RESUMEN

Due to the evolutionary conservation of the regulation of hematopoiesis, Drosophila provides an excellent model organism to study blood cell differentiation and hematopoietic stem cell (HSC) maintenance. The larvae of Drosophila melanogaster respond to immune induction with the production of special effector blood cells, the lamellocytes, which encapsulate and subsequently kill the invader. Lamellocytes differentiate as a result of a concerted action of all three hematopoietic compartments of the larva: the lymph gland, the circulating hemocytes, and the sessile tissue. Within the lymph gland, the communication of the functional zones, the maintenance of HSC fate, and the differentiation of effector blood cells are regulated by a complex network of signaling pathways. Applying gene conversion, mutational analysis, and a candidate based genetic interaction screen, we investigated the role of Headcase (Hdc), the homolog of the tumor suppressor HECA in the hematopoiesis of Drosophila. We found that naive loss-of-function hdc mutant larvae produce lamellocytes, showing that Hdc has a repressive role in effector blood cell differentiation. We demonstrate that hdc genetically interacts with the Hedgehog and the Decapentaplegic pathways in the hematopoietic niche of the lymph gland. By adding further details to the model of blood cell fate regulation in the lymph gland of the larva, our findings contribute to the better understanding of HSC maintenance.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Hemolinfa/citología , Transducción de Señal , Animales , Diferenciación Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Hemolinfa/metabolismo , Modelos Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...