Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO Rep ; 25(1): 254-285, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177910

RESUMEN

Midbrain dopaminergic neurons (mDANs) control voluntary movement, cognition, and reward behavior under physiological conditions and are implicated in human diseases such as Parkinson's disease (PD). Many transcription factors (TFs) controlling human mDAN differentiation during development have been described, but much of the regulatory landscape remains undefined. Using a tyrosine hydroxylase (TH) human iPSC reporter line, we here generate time series transcriptomic and epigenomic profiles of purified mDANs during differentiation. Integrative analysis predicts novel regulators of mDAN differentiation and super-enhancers are used to identify key TFs. We find LBX1, NHLH1 and NR2F1/2 to promote mDAN differentiation and show that overexpression of either LBX1 or NHLH1 can also improve mDAN specification. A more detailed investigation of TF targets reveals that NHLH1 promotes the induction of neuronal miR-124, LBX1 regulates cholesterol biosynthesis, and NR2F1/2 controls neuronal activity.


Asunto(s)
Neuronas Dopaminérgicas , Células Madre Pluripotentes Inducidas , Humanos , Neuronas Dopaminérgicas/metabolismo , Multiómica , Mesencéfalo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética
2.
Life Sci Alliance ; 7(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38011998

RESUMEN

2-Hydroxyglutarate (2-HG) is an oncometabolite that accumulates in certain cancers. Gain-of-function mutations in isocitrate dehydrogenase lead to 2-HG accumulation at the expense of alpha-ketoglutarate. Elevated 2-HG levels inhibit histone and DNA demethylases, causing chromatin structure and gene regulation changes with tumorigenic consequences. We investigated the effects of elevated 2-HG levels in Saccharomyces cerevisiae, a yeast devoid of DNA methylation and heterochromatin-associated histone methylation. Our results demonstrate genetic background-dependent gene expression changes and altered H3K4 and H3K36 methylation at specific loci. Analysis of histone demethylase deletion strains indicated that 2-HG inhibits Rph1 sufficiently to induce extensive gene expression changes. Rph1 is the yeast homolog of human KDM4 demethylases and, among the yeast histone demethylases, was the most sensitive to the inhibitory effect of 2-HG in vitro. Interestingly, Rph1 deficiency favors gene repression and leads to further down-regulation of already silenced genes marked by low H3K4 and H3K36 trimethylation, but abundant in H3K36 dimethylation. Our results provide novel insights into the genome-wide effects of 2-HG and highlight Rph1 as its preferential demethylase target.


Asunto(s)
Histona Demetilasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Expresión Génica , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histonas/metabolismo , Metilación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Cell Death Dis ; 14(7): 468, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37495601

RESUMEN

Despite high initial response rates to targeted kinase inhibitors, the majority of patients suffering from metastatic melanoma present with high relapse rates, demanding for alternative therapeutic options. We have previously developed a drug repurposing workflow to identify metabolic drug targets that, if depleted, inhibit the growth of cancer cells without harming healthy tissues. In the current study, we have applied a refined version of the workflow to specifically predict both, common essential genes across various cancer types, and melanoma-specific essential genes that could potentially be used as drug targets for melanoma treatment. The in silico single gene deletion step was adapted to simulate the knock-out of all targets of a drug on an objective function such as growth or energy balance. Based on publicly available, and in-house, large-scale transcriptomic data metabolic models for melanoma were reconstructed enabling the prediction of 28 candidate drugs and estimating their respective efficacy. Twelve highly efficacious drugs with low half-maximal inhibitory concentration values for the treatment of other cancers, which are not yet approved for melanoma treatment, were used for in vitro validation using melanoma cell lines. Combination of the top 4 out of 6 promising candidate drugs with BRAF or MEK inhibitors, partially showed synergistic growth inhibition compared to individual BRAF/MEK inhibition. Hence, the repurposing of drugs may enable an increase in therapeutic options e.g., for non-responders or upon acquired resistance to conventional melanoma treatments.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Humanos , Proteínas Proto-Oncogénicas B-raf/metabolismo , Recurrencia Local de Neoplasia/tratamiento farmacológico , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinasas de Proteína Quinasa Activadas por Mitógenos , Desarrollo de Medicamentos , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral
4.
Cell Rep ; 42(3): 112153, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36848289

RESUMEN

Pyruvate dehydrogenase (PDH) is the central enzyme connecting glycolysis and the tricarboxylic acid (TCA) cycle. The importance of PDH function in T helper 17 (Th17) cells still remains to be studied. Here, we show that PDH is essential for the generation of a glucose-derived citrate pool needed for Th17 cell proliferation, survival, and effector function. In vivo, mice harboring a T cell-specific deletion of PDH are less susceptible to developing experimental autoimmune encephalomyelitis. Mechanistically, the absence of PDH in Th17 cells increases glutaminolysis, glycolysis, and lipid uptake in a mammalian target of rapamycin (mTOR)-dependent manner. However, cellular citrate remains critically low in mutant Th17 cells, which interferes with oxidative phosphorylation (OXPHOS), lipid synthesis, and histone acetylation, crucial for transcription of Th17 signature genes. Increasing cellular citrate in PDH-deficient Th17 cells restores their metabolism and function, identifying a metabolic feedback loop within the central carbon metabolism that may offer possibilities for therapeutically targeting Th17 cell-driven autoimmunity.


Asunto(s)
Ácido Cítrico , Células Th17 , Ratones , Animales , Citratos , Oxidorreductasas , Lípidos , Piruvatos , Mamíferos
5.
Cells ; 11(16)2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-36010563

RESUMEN

Brain disorders represent 32% of the global disease burden, with 169 million Europeans affected. Constraint-based metabolic modelling and other approaches have been applied to predict new treatments for these and other diseases. Many recent studies focused on enhancing, among others, drug predictions by generating generic metabolic models of brain cells and on the contextualisation of the genome-scale metabolic models with expression data. Experimental flux rates were primarily used to constrain or validate the model inputs. Bi-cellular models were reconstructed to study the interaction between different cell types. This review highlights the evolution of genome-scale models for neurodegenerative diseases and glioma. We discuss the advantages and drawbacks of each approach and propose improvements, such as building bi-cellular models, tailoring the biomass formulations for glioma and refinement of the cerebrospinal fluid composition.


Asunto(s)
Neoplasias Encefálicas , Glioma , Enfermedades Neurodegenerativas , Biomasa , Neoplasias Encefálicas/genética , Genoma Humano , Humanos , Enfermedades Neurodegenerativas/genética
6.
Antioxidants (Basel) ; 11(8)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35892629

RESUMEN

The nuclear factor erythroid 2-related factor 2 (NRF2) was originally described as a master regulator of antioxidant cellular response, but in the time since, numerous important biological functions linked to cell survival, cellular detoxification, metabolism, autophagy, proteostasis, inflammation, immunity, and differentiation have been attributed to this pleiotropic transcription factor that regulates hundreds of genes. After 40 years of in-depth research and key discoveries, NRF2 is now at the center of a vast regulatory network, revealing NRF2 signalling as increasingly complex. It is widely recognized that reactive oxygen species (ROS) play a key role in human physiological and pathological processes such as ageing, obesity, diabetes, cancer, and neurodegenerative diseases. The high oxygen consumption associated with high levels of free iron and oxidizable unsaturated lipids make the brain particularly vulnerable to oxidative stress. A good stability of NRF2 activity is thus crucial to maintain the redox balance and therefore brain homeostasis. In this review, we have gathered recent data about the contribution of the NRF2 pathway in the healthy brain as well as during metabolic diseases, cancer, ageing, and ageing-related neurodegenerative diseases. We also discuss promising therapeutic strategies and the need for better understanding of cell-type-specific functions of NRF2 in these different fields.

7.
Cell Death Dis ; 13(1): 54, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35022419

RESUMEN

Despite remarkable advances in therapeutic interventions, malignant melanoma (MM) remains a life-threating disease. Following high initial response rates to targeted kinase-inhibition metastases quickly acquire resistance and present with enhanced tumor progression and invasion, demanding alternative treatment options. We show 2nd generation hexameric TRAIL-receptor-agonist IZI1551 (IZI) to effectively induce apoptosis in MM cells irrespective of the intrinsic BRAF/NRAS mutation status. Conditioning to the EC50 dose of IZI converted the phenotype of IZI-sensitive parental MM cells into a fast proliferating and invasive, IZI-resistant metastasis. Mechanistically, we identified focal adhesion kinase (FAK) to play a dual role in phenotype-switching. In the cytosol, activated FAK triggers survival pathways in a PI3K- and MAPK-dependent manner. In the nucleus, the FERM domain of FAK prevents activation of wtp53, as being expressed in the majority of MM, and consequently intrinsic apoptosis. Caspase-8-mediated cleavage of FAK as well as FAK knockdown, and pharmacological inhibition, respectively, reverted the metastatic phenotype-switch and restored IZI responsiveness. FAK inhibition also re-sensitized MM cells isolated from patient metastasis that had relapsed from targeted kinase inhibition to cell death, irrespective of the intrinsic BRAF/NRAS mutation status. Hence, FAK-inhibition alone or in combination with 2nd generation TRAIL-receptor agonists may be recommended for treatment of initially resistant and relapsed MM, respectively.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Línea Celular Tumoral , Quinasa 1 de Adhesión Focal/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Transducción de Señal/fisiología , Neoplasias Cutáneas , Melanoma Cutáneo Maligno
8.
Cell Death Differ ; 29(1): 230-245, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34453119

RESUMEN

Mounting evidence indicates that immunogenic therapies engaging the unfolded protein response (UPR) following endoplasmic reticulum (ER) stress favor proficient cancer cell-immune interactions, by stimulating the release of immunomodulatory/proinflammatory factors by stressed or dying cancer cells. UPR-driven transcription of proinflammatory cytokines/chemokines exert beneficial or detrimental effects on tumor growth and antitumor immunity, but the cell-autonomous machinery governing the cancer cell inflammatory output in response to immunogenic therapies remains poorly defined. Here, we profiled the transcriptome of cancer cells responding to immunogenic or weakly immunogenic treatments. Bioinformatics-driven pathway analysis indicated that immunogenic treatments instigated a NF-κB/AP-1-inflammatory stress response, which dissociated from both cell death and UPR. This stress-induced inflammation was specifically abolished by the IRE1α-kinase inhibitor KIRA6. Supernatants from immunogenic chemotherapy and KIRA6 co-treated cancer cells were deprived of proinflammatory/chemoattractant factors and failed to mobilize neutrophils and induce dendritic cell maturation. Furthermore, KIRA6 significantly reduced the in vivo vaccination potential of dying cancer cells responding to immunogenic chemotherapy. Mechanistically, we found that the anti-inflammatory effect of KIRA6 was still effective in IRE1α-deficient cells, indicating a hitherto unknown off-target effector of this IRE1α-kinase inhibitor. Generation of a KIRA6-clickable photoaffinity probe, mass spectrometry, and co-immunoprecipitation analysis identified cytosolic HSP60 as a KIRA6 off-target in the IKK-driven NF-κB pathway. In sum, our study unravels that HSP60 is a KIRA6-inhibitable upstream regulator of the NF-κB/AP-1-inflammatory stress responses evoked by immunogenic treatments. It also urges caution when interpreting the anti-inflammatory action of IRE1α chemical inhibitors.


Asunto(s)
Endorribonucleasas , Proteínas Serina-Treonina Quinasas , Retículo Endoplásmico/metabolismo , Endorribonucleasas/metabolismo , Humanos , Imidazoles , Muerte Celular Inmunogénica , Inflamación/metabolismo , Naftalenos , Pirazinas
9.
Front Aging Neurosci ; 13: 713084, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34650424

RESUMEN

Objective: To establish a workflow for mitochondrial DNA (mtDNA) CpG methylation using Nanopore whole-genome sequencing and perform first pilot experiments on affected Parkin biallelic mutation carriers (Parkin-PD) and healthy controls. Background: Mitochondria, including mtDNA, are established key players in Parkinson's disease (PD) pathogenesis. Mutations in Parkin, essential for degradation of damaged mitochondria, cause early-onset PD. However, mtDNA methylation and its implication in PD is understudied. Herein, we establish a workflow using Nanopore sequencing to directly detect mtDNA CpG methylation and compare mtDNA methylation between Parkin-related PD and healthy individuals. Methods: To obtain mtDNA, whole-genome Nanopore sequencing was performed on blood-derived from five Parkin-PD and three control subjects. In addition, induced pluripotent stem cell (iPSC)-derived midbrain neurons from four of these patients with PD and the three control subjects were investigated. The workflow was validated, using methylated and unmethylated 897 bp synthetic DNA samples at different dilution ratios (0, 50, 100% methylation) and mtDNA without methylation. MtDNA CpG methylation frequency (MF) was detected using Nanopolish and Megalodon. Results: Across all blood-derived samples, we obtained a mean coverage of 250.3X (SD ± 80.5X) and across all neuron-derived samples 830X (SD ± 465X) of the mitochondrial genome. We detected overall low-level CpG methylation from the blood-derived DNA (mean MF ± SD = 0.029 ± 0.041) and neuron-derived DNA (mean MF ± SD = 0.019 ± 0.035). Validation of the workflow, using synthetic DNA samples showed that highly methylated DNA molecules were prone to lower Guppy Phred quality scores and thereby more likely to fail Guppy base-calling. CpG methylation in blood- and neuron-derived DNA was significantly lower in Parkin-PD compared to controls (Mann-Whitney U-test p < 0.05). Conclusion: Nanopore sequencing is a useful method to investigate mtDNA methylation architecture, including Guppy-failed reads is of importance when investigating highly methylated sites. We present a mtDNA methylation workflow and suggest methylation variability across different tissues and between Parkin-PD patients and controls as an initial model to investigate.

10.
Cell Rep ; 37(3): 109864, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34686322

RESUMEN

Increasing evidence suggests that neurodevelopmental alterations might contribute to increase the susceptibility to develop neurodegenerative diseases. We investigate the occurrence of developmental abnormalities in dopaminergic neurons in a model of Parkinson's disease (PD). We monitor the differentiation of human patient-specific neuroepithelial stem cells (NESCs) into dopaminergic neurons. Using high-throughput image analyses and single-cell RNA sequencing, we observe that the PD-associated LRRK2-G2019S mutation alters the initial phase of neuronal differentiation by accelerating cell-cycle exit with a concomitant increase in cell death. We identify the NESC-specific core regulatory circuit and a molecular mechanism underlying the observed phenotypes. The expression of NR2F1, a key transcription factor involved in neurogenesis, decreases in LRRK2-G2019S NESCs, neurons, and midbrain organoids compared to controls. We also observe accelerated dopaminergic differentiation in vivo in NR2F1-deficient mouse embryos. This suggests a pathogenic mechanism involving the LRRK2-G2019S mutation, where the dynamics of dopaminergic differentiation are modified via NR2F1.


Asunto(s)
Encéfalo/enzimología , Factor de Transcripción COUP I/metabolismo , Neuronas Dopaminérgicas/enzimología , Células Madre Pluripotentes Inducidas/enzimología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Células-Madre Neurales/enzimología , Neurogénesis , Enfermedad de Parkinson/enzimología , Animales , Encéfalo/patología , Factor de Transcripción COUP I/genética , Ciclo Celular , Línea Celular , Proliferación Celular , Supervivencia Celular , Neuronas Dopaminérgicas/patología , Femenino , Humanos , Células Madre Pluripotentes Inducidas/patología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Masculino , Ratones de la Cepa 129 , Ratones Noqueados , Mutación , Células-Madre Neurales/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Fenotipo , RNA-Seq , Transducción de Señal , Análisis de la Célula Individual , Factores de Tiempo
11.
Epigenetics Chromatin ; 14(1): 43, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34503558

RESUMEN

BACKGROUND: Cell types in ventral midbrain are involved in diseases with variable genetic susceptibility, such as Parkinson's disease and schizophrenia. Many genetic variants affect regulatory regions and alter gene expression in a cell-type-specific manner depending on the chromatin structure and accessibility. RESULTS: We report 20,658 single-nuclei chromatin accessibility profiles of ventral midbrain from two genetically and phenotypically distinct mouse strains. We distinguish ten cell types based on chromatin profiles and analysis of accessible regions controlling cell identity genes highlights cell-type-specific key transcription factors. Regulatory variation segregating the mouse strains manifests more on transcriptome than chromatin level. However, cell-type-level data reveals changes not captured at tissue level. To discover the scope and cell-type specificity of cis-acting variation in midbrain gene expression, we identify putative regulatory variants and show them to be enriched at differentially expressed loci. Finally, we find TCF7L2 to mediate trans-acting variation selectively in midbrain neurons. CONCLUSIONS: Our data set provides an extensive resource to study gene regulation in mesencephalon and provides insights into control of cell identity in the midbrain and identifies cell-type-specific regulatory variation possibly underlying phenotypic and behavioural differences between mouse strains.


Asunto(s)
Cromatina , Factores de Transcripción , Animales , Cromatina/genética , Mesencéfalo/metabolismo , Ratones , Secuencias Reguladoras de Ácidos Nucleicos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
12.
Front Oncol ; 11: 721624, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34458153

RESUMEN

Autophagy is a highly conserved cellular process in which intracellular proteins and organelles are sequestered and degraded after the fusion of double-membrane vesicles known as autophagosomes with lysosomes. The process of autophagy is dependent on autophagy-related (ATG) proteins. The role of autophagy in cancer is very complex and still elusive. We investigated the expression of ATG proteins in benign nevi, primary and metastatic melanoma tissues using customized tissue microarrays (TMA). Results from immunohistochemistry show that the expression of ATG5 and ATG7 is significantly reduced in melanoma tissues compared to benign nevi. This reduction correlated with changes in the expression of autophagic activity markers, suggesting decreased basal levels of autophagy in primary and metastatic melanomas. Furthermore, the analysis of survival data of melanoma patients revealed an association between reduced ATG5 and ATG7 levels with an unfavourable clinical outcome. Currently, the mechanisms regulating ATG expression levels in human melanoma remains unknown. Using bioinformatic predictions of transcription factor (TF) binding motifs in accessible chromatin of primary melanocytes, we identified new TFs involved in the regulation of core ATGs. We then show that nuclear respiratory factor 1 (NRF1) stimulates the production of mRNA and protein as well as the promoter activity of ATG5 and ATG7. Moreover, NRF1 deficiency increased in vitro migration of melanoma cells. Our results support the concept that reduced autophagic activity contributes to melanoma development and progression, and identifies NRF1 as a novel TF involved in the regulation of both ATG5 and ATG7 genes.

13.
Genes Brain Behav ; 20(8): e12769, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34453370

RESUMEN

Dopaminergic neurons (DA neurons) are controlled by multiple factors, many involved in neurological disease. Parkinson's disease motor symptoms are caused by the demise of nigral DA neurons, leading to loss of striatal dopamine (DA). Here, we measured DA concentration in the dorsal striatum of 32 members of Collaborative Cross (CC) family and their eight founder strains. Striatal DA varied greatly in founders, and differences were highly heritable in the inbred CC progeny. We identified a locus, containing 164 genes, linked to DA concentration in the dorsal striatum on chromosome X. We used RNAseq profiling of the ventral midbrain of two founders with substantial difference in striatal DA-C56BL/6 J and A/J-to highlight potential protein-coding candidates modulating this trait. Among the five differentially expressed genes within the locus, we found that the gene coding for the collagen IV alpha 6 chain (Col4a6) was expressed nine times less in A/J than in C57BL/6J. Using single cell RNA-seq data from developing human midbrain, we found that COL4A6 is highly expressed in radial glia-like cells and neuronal progenitors, indicating a role in neuronal development. Collagen IV alpha-6 chain (COL4A6) controls axogenesis in simple model organisms. Consistent with these findings, A/J mice had less striatal axonal branching than C57BL/6J mice. We tentatively conclude that DA concentration and axonal branching in dorsal striatum are modulated by COL4A6, possibly during development. Our study shows that genetic mapping based on an easily measured Central Nervous System (CNS) trait, using the CC population, combined with follow-up observations, can parse heritability of such a trait, and nominate novel functions for commonly expressed proteins.


Asunto(s)
Colágeno Tipo IV/genética , Cuerpo Estriado/metabolismo , Proyección Neuronal , Sitios de Carácter Cuantitativo , Animales , Axones/metabolismo , Axones/fisiología , Células Cultivadas , Cuerpo Estriado/crecimiento & desarrollo , Dopamina/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL
14.
Glia ; 69(1): 137-150, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32721081

RESUMEN

Repeated systemic challenge with lipopolysaccharides (LPS) can induce microglia activation and inflammatory neurodegeneration in the substantia nigra pars compacta region of mice. We now explored the role of mononuclear phagocytes associated nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX-2) in inflammatory neurodegeneration. Cybb-deficient NOX-2 knock-out (KO) and control wild type (WT) mice were treated intraperitoneally daily over four consecutive days with 1 µg/gbw/day LPS. Transcriptome analysis by RNA-seq of total brain tissue indicated increased LPS-induced upregulation of genes belonging to the reactive oxygen species and reactive nitrogen species production, complement and lysosome activation as well as apoptosis and necroptosis in WT compared to NOX-2 KO mice. Validation of up-regulated gene transcripts via qRT-PCR confirmed that LPS-challenged NOX-2 KO mice expressed lower levels of the microglial phagocytosis-related genes Nos2, Cd68, Aif1/Iba1, Cyba, Itgam, and Fcer1g compared to WT mice at Day 5 after systemic inflammatory challenge, but no significant differences in the pro-inflammatory genes Tnfα and Il1b as well as microglial IBA1 and CD68 intensities were observed between both genotypes. Furthermore, loss of tyrosine hydroxylase positive (TH+) and NeuN positive neurons in the substantia nigra pars compacta upon repeated systemic LPS application were attenuated in NOX-2 KO mice. Thus, our data demonstrate that loss of dopaminergic neurons in the substantia nigra pars compacta after repeated systemic challenge with LPS is associated with a microglial phagocytosis-related gene activation profile involving the NADPH oxidase subunit Cybb/gp91phox.


Asunto(s)
Microglía , Fagocitosis , Animales , Neuronas Dopaminérgicas , Lipopolisacáridos/toxicidad , Ratones , Ratones Noqueados , NADPH Oxidasa 2/genética , NADPH Oxidasas/genética , Receptores Inmunológicos
15.
Front Genet ; 11: 566734, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33173537

RESUMEN

Dopaminergic neurons in the midbrain are of particular interest due to their role in diseases such as Parkinson's disease and schizophrenia. Genetic variation between individuals can affect the integrity and function of dopaminergic neurons but the DNA variants and molecular cascades modulating dopaminergic neurons and other cells types of ventral midbrain remain poorly defined. Three genetically diverse inbred mouse strains - C57BL/6J, A/J, and DBA/2J - differ significantly in their genomes (∼7 million variants), motor and cognitive behavior, and susceptibility to neurotoxins. To further dissect the underlying molecular networks responsible for these variable phenotypes, we generated RNA-seq and ChIP-seq data from ventral midbrains of the 3 mouse strains. We defined 1000-1200 transcripts that are differentially expressed among them. These widespread differences may be due to altered activity or expression of upstream transcription factors. Interestingly, transcription factors were significantly underrepresented among the differentially expressed genes, and only one transcription factor, Pttg1, showed significant differences between all three strains. The changes in Pttg1 expression were accompanied by consistent alterations in histone H3 lysine 4 trimethylation at Pttg1 transcription start site. The ventral midbrain transcriptome of 3-month-old C57BL/6J congenic Pttg1-/- mutants was only modestly altered, but shifted toward that of A/J and DBA/2J in 9-month-old mice. Principle component analysis (PCA) identified the genes underlying the transcriptome shift and deconvolution of these bulk RNA-seq changes using midbrain single cell RNA-seq data suggested that the changes were occurring in several different cell types, including neurons, oligodendrocytes, and astrocytes. Taken together, our results show that Pttg1 contributes to gene regulatory variation between mouse strains and influences mouse midbrain transcriptome during aging.

16.
J Neural Transm (Vienna) ; 127(5): 729-748, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32248367

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder caused by a complex interplay of genetic and environmental factors. For the stratification of PD patients and the development of advanced clinical trials, including causative treatments, a better understanding of the underlying genetic architecture of PD is required. Despite substantial efforts, genome-wide association studies have not been able to explain most of the observed heritability. The majority of PD-associated genetic variants are located in non-coding regions of the genome. A systematic assessment of their functional role is hampered by our incomplete understanding of genotype-phenotype correlations, for example through differential regulation of gene expression. Here, the recent progress and remaining challenges for the elucidation of the role of non-coding genetic variants is reviewed with a focus on PD as a complex disease with multifactorial origins. The function of gene regulatory elements and the impact of non-coding variants on them, and the means to map these elements on a genome-wide level, will be delineated. Moreover, examples of how the integration of functional genomic annotations can serve to identify disease-associated pathways and to prioritize disease- and cell type-specific regulatory variants will be given. Finally, strategies for functional validation and considerations for suitable model systems are outlined. Together this emphasizes the contribution of rare and common genetic variants to the complex pathogenesis of PD and points to remaining challenges for the dissection of genetic complexity that may allow for better stratification, improved diagnostics and more targeted treatments for PD in the future.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Enfermedad de Parkinson/genética , Humanos
17.
Neurobiol Aging ; 88: 91-107, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32087947

RESUMEN

Sialic acid-binding Ig-like lectin (Siglec) receptors are linked to neurodegenerative processes, but the role of sialic acids in physiological aging is still not fully understood. We investigated the impact of reduced sialylation in the brain of mice heterozygous for the enzyme glucosamine-2-epimerase/N-acetylmannosamine kinase (GNE+/-) that is essential for sialic acid biosynthesis. We demonstrate that GNE+/- mice have hyposialylation in different brain regions, less synapses in the hippocampus and reduced microglial arborization already at 6 months followed by increased loss of neurons at 12 months. A transcriptomic analysis revealed no pro-inflammatory changes indicating an innate homeostatic immune process leading to the removal of synapses and neurons in GNE+/- mice during aging. Crossbreeding with complement C3-deficient mice rescued the earlier onset of neuronal and synaptic loss as well as the changes in microglial arborization. Thus, sialic acids of the glycocalyx contribute to brain homeostasis and act as a recognition system for the innate immune system in the brain.


Asunto(s)
Envejecimiento/inmunología , Envejecimiento/patología , Neuronas/patología , Ácidos Siálicos/fisiología , Sinapsis/patología , Animales , Encéfalo/inmunología , Encéfalo/metabolismo , Homeostasis , Inmunidad Innata , Ratones Transgénicos , Racemasas y Epimerasas/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/fisiología , Ácidos Siálicos/biosíntesis
18.
Parkinsonism Relat Disord ; 67: 48-55, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31621607

RESUMEN

Parkinson's disease (PD) is a multifactorial disorder with complex etiology. The most prevalent PD associated mutation, LRRK2-G2019S is linked to familial and sporadic cases. Based on the multitude of genetic predispositions in PD and the incomplete penetrance of LRRK2-G2019S, we hypothesize that modifiers in the patients' genetic background act as susceptibility factors for developing PD. To assess LRRK2-G2019S modifiers, we used human induced pluripotent stem cell-derived neuroepithelial stem cells (NESCs). Isogenic controls distinguish between LRRK2-G2019S dependent and independent cellular phenotypes. LRRK2-G2019S patient and healthy mutagenized lines showed altered NESC self-renewal and viability, as well as impaired serine metabolism. In patient cells, phenotypes were only partly LRRK2-G2019S dependent, suggesting a significant contribution of the genetic background. In this context we identified the gene serine racemase (SRR) as a novel patient-specific, developmental, genetic modifier contributing to the aberrant phenotypes. Its enzymatic product, d-serine, rescued altered cellular phenotypes. Susceptibility factors in the genetic background, such as SRR, could be new targets for early PD diagnosis and treatment.


Asunto(s)
Autorrenovación de las Células/genética , Enfermedad de Parkinson/genética , Racemasas y Epimerasas/genética , Serina/metabolismo , Estudios de Casos y Controles , Línea Celular , Supervivencia Celular/genética , Predisposición Genética a la Enfermedad , Humanos , Células Madre Pluripotentes Inducidas , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Células-Madre Neurales , Enfermedad de Parkinson/metabolismo , Fenotipo
19.
Epigenomics ; 11(6): 619-638, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31044623

RESUMEN

Aim: Prediction of genes under dynamic post-transcriptional regulation from epigenomic data. Materials & methods: We used time-series profiles of chromatin immunoprecipitation-seq data of histone modifications from differentiation of mesenchymal progenitor cells toward adipocytes and osteoblasts to predict gene expression levels at five time points in both lineages and estimated the deviation of those predictions from the RNA-seq measured expression levels using linear regression. Results & conclusion: The genes with biggest changes in their estimated stability across the time series are enriched for noncoding RNAs and lineage-specific biological processes. Clustering mRNAs according to their stability dynamics allows identification of post-transcriptionally coregulated mRNAs and their shared regulators through sequence enrichment analysis. We identify miR-204 as an early induced adipogenic microRNA targeting Akr1c14 and Il1rl1.


Asunto(s)
Regulación de la Expresión Génica , Procesamiento Postranscripcional del ARN , Adipocitos/metabolismo , Aldehído Reductasa/genética , Animales , Diferenciación Celular/genética , Línea Celular , Linaje de la Célula/genética , Inmunoprecipitación de Cromatina , Análisis por Conglomerados , Epigenómica , Proteína 1 Similar al Receptor de Interleucina-1/genética , Modelos Lineales , Ratones , MicroARNs/genética , MicroARNs/metabolismo , MicroARNs/fisiología , Osteoblastos/metabolismo
20.
Glia ; 67(3): 539-550, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30548312

RESUMEN

The microglial triggering receptor expressed on myeloid cells 2 (TREM2) signals via the activatory membrane adaptor molecule TYROBP. Genetic variants or mutations of TREM2 or TYROBP have been linked to inflammatory neurodegenerative diseases associated with aging. The typical aging process goes along with microglial changes and mild neuronal loss, but the exact contribution of TREM2 is still unclear. Aged TREM2 knock-out mice showed decreased age-related neuronal loss in the substantia nigra and the hippocampus. Transcriptomic analysis of the brains of 24 months old TREM2 knock-out mice revealed 211 differentially expressed genes mostly downregulated and associated with complement activation and oxidative stress response pathways. Consistently, 24 months old TREM2 knock-out mice showed lower transcription of microglial (Aif1 and Tmem119), oxidative stress markers (Inos, Cyba, and Cybb) and complement components (C1qa, C1qb, C1qc, C3, C4b, Itgam, and Itgb2), decreased microglial numbers and expression of the microglial activation marker Cd68, as well as accumulation of oxidized lipids. Cultured microglia of TREM2 knock-out mice showed reduced phagocytosis and oxidative burst. Thus, microglial TREM2 contributes to age-related microglial changes, phagocytic oxidative burst, and loss of neurons with possible detrimental effects during physiological aging.


Asunto(s)
Envejecimiento/metabolismo , Glicoproteínas de Membrana/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Receptores Inmunológicos/metabolismo , Factores de Edad , Envejecimiento/genética , Animales , Hipocampo/citología , Hipocampo/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Microglía/citología , Neuronas/citología , Estrés Oxidativo/fisiología , Fagocitosis/fisiología , Receptores Inmunológicos/genética , Sustancia Negra/citología , Sustancia Negra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...