Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Pharmaceutics ; 16(4)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38675132

RESUMEN

NDH-4338 is a highly lipophilic prodrug comprising indomethacin and an acetylcholinesterase inhibitor. A design of experiments approach was used to synthesize, characterize, and evaluate the wound healing efficacy of optimized NDH-4338 nanosuspensions against nitrogen mustard-induced skin injury. Nanosuspensions were prepared by sonoprecipitation in the presence of a Vitamin E TPGS aqueous stabilizer solution. Critical processing parameters and material attributes were optimized to reduce particle size and determine the effect on dissolution rate and burn healing efficacy. The antisolvent/solvent ratio (A/S), dose concentration (DC), and drug/stabilizer ratio (D/S) were the critical sonoprecipitation factors that control particle size. These factors were subjected to a Box-Behnken design and response surface analysis, and model quality was assessed. Maximize desirability and simulation experiment optimization approaches were used to determine nanosuspension parameters with the smallest size and the lowest defect rate within the 10-50 nm specification limits. Optimized and unoptimized nanosuspensions were prepared and characterized. An established depilatory double-disc mouse model was used to evaluate the healing of nitrogen mustard-induced dermal injuries. Optimized nanosuspensions (A/S = 6.2, DC = 2% w/v, D/S = 2.8) achieved a particle size of 31.46 nm with a narrow size range (PDI = 0.110) and a reduced defect rate (42.2 to 6.1%). The optimized nanosuspensions were stable and re-dispersible, and they showed a ~45% increase in cumulative drug release and significant edema reduction in mice. Optimized NDH-4338 nanosuspensions were smaller with more uniform sizes that led to improved physical stability, faster dissolution, and enhanced burn healing efficacy compared to unoptimized nanosuspensions.

2.
Animal Model Exp Med ; 6(1): 57-65, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36872306

RESUMEN

BACKGROUND: Sulfur mustard (SM) is a chemical warfare vesicant that severely injures exposed eyes, lungs, and skin. Mechlorethamine hydrochloride (NM) is widely used as an SM surrogate. This study aimed to develop a depilatory double-disc (DDD) NM skin burn model for investigating vesicant pharmacotherapy countermeasures. METHODS: Hair removal method (clipping only versus clipping followed by a depilatory), the effect of acetone in the vesicant administration vehicle, NM dose (0.5-20 µmol), vehicle volume (5-20 µl), and time course (0.5-21 days) were investigated using male and female CD-1 mice. Edema, an indicator of burn response, was assessed by biopsy skin weight. The ideal NM dose to induce partial-thickness burns was assessed by edema and histopathologic evaluation. The optimized DDD model was validated using an established reagent, NDH-4338, a cyclooxygenase, inducible nitric oxide synthase, and acetylcholinesterase inhibitor prodrug. RESULTS: Clipping/depilatory resulted in a 5-fold higher skin edematous response and was highly reproducible (18-fold lower %CV) compared to clipping alone. Acetone did not affect edema formation. Peak edema occurred 24-48 h after NM administration using optimized dosing methods and volume. Ideal partial-thickness burns were achieved with 5 µmol of NM and responded to treatment with NDH-4338. No differences in burn edematous responses were observed between males and females. CONCLUSION: A highly reproducible and sensitive partial-thickness skin burn model was developed for assessing vesicant pharmacotherapy countermeasures. This model provides clinically relevant wound severity and eliminates the need for organic solvents that induce changes to the skin barrier function.


Asunto(s)
Acetona , Irritantes , Femenino , Masculino , Animales , Ratones , Acetilcolinesterasa , Mecloretamina , Piel , Modelos Animales de Enfermedad
3.
Exp Mol Pathol ; 128: 104807, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35798063

RESUMEN

Sulfur mustard (SM; bis(2-chloroethyl) sulfide) is a highly reactive bifunctional alkylating agent synthesized for chemical warfare. The eyes are particularly sensitive to SM where it causes irritation, pain, photophobia, and blepharitis, depending on the dose and duration of exposure. In these studies, we examined the effects of SM vapor on the corneas of New Zealand white male rabbits. Edema and hazing of the cornea, signs of acute injury, were observed within one day of exposure to SM, followed by neovascularization, a sign of chronic or late phase pathology, which persisted for at least 28 days. Significant epithelial-stromal separation ranging from ~8-17% of the epithelial surface was observed. In the stroma, there was a marked increase in CD45+ leukocytes and a decrease of keratocytes, along with areas of disorganization of collagen fibers. SM also disrupted the corneal basement membrane and altered the expression of perlecan, a heparan sulfate proteoglycan, and cellular fibronectin, an extracellular matrix glycoprotein. This was associated with an increase in basement membrane matrix metalloproteinases including ADAM17, which is important in remodeling of the basement membrane during wound healing. Tenascin-C, an extracellular matrix glycoprotein, was also upregulated in the stroma 14-28 d post SM, a finding consistent with its role in organizing structural components of the stroma necessary for corneal transparency. These data demonstrate that SM vapor causes persistent alterations in structural components of the cornea. Further characterization of SM-induced injury in rabbit cornea will be useful for the identification of targets for the development of ocular countermeasures.


Asunto(s)
Lesiones de la Cornea , Gas Mostaza , Masculino , Conejos , Animales , Gas Mostaza/toxicidad , Proteoglicanos de Heparán Sulfato/metabolismo , Tenascina/metabolismo , Fibronectinas/metabolismo , Lesiones de la Cornea/inducido químicamente , Lesiones de la Cornea/metabolismo , Membrana Basal/metabolismo , Membrana Basal/patología , Matriz Extracelular/metabolismo , Alquilantes , Sulfuros/metabolismo , Colágeno/metabolismo
4.
Drug Deliv Transl Res ; 12(1): 240-256, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33590464

RESUMEN

Ductal carcinoma in situ (DCIS) represents approximately 20-25% of newly diagnosed breast cancers. DCIS is treated by surgery and possibly radiotherapy. Chemotherapy is only used as adjuvant or neoadjuvant therapy but not as primary therapy. The present study investigated the intraductal administration of Ciclopirox (CPX) formulated in nanosuspensions (NSs) or nanoparticles (NPs) to treat DCIS locally in a Fischer 344 rat model orthotopically implanted with 13762 Mat B III cells. Slow converting esterase responsive CPX prodrugs (CPDs) were successfully synthesized at high purity (> 95%) by directly acetylating the hydroxyl group or by appending a self-immolative linker between CPX and a phenolic ester. Direct esterification CPDs were not sufficiently stable so self-immolative CPDs were formulated in NSs and NPs. Prodrug release was evaluated from poly(lactic-co-glycolic acid) NPs, and CPD4 demonstrated the slowest release rate with the rank order of CPD2 (R = methyl) > CPD3 (R = t-butyl) > CPD4 (R = phenyl). Intraductally administered CPX NS, CPD4 NS, and an innovative mixture of CDP4 NS and NPs (at 1 mg CPX equivalent/duct) demonstrated significant (p < 0.05) in vivo anti-tumor efficacy compared with immediate release (IR) CPX NS and non-treated controls. CPX mammary persistence at 6 h and 48 h after CPD4 NS or NP administration was also greater than after the immediate release CPX NS. A strong correlation between CPX mammary persistence and efficacy is demonstrated. In conclusion, nanoformulations utilizing a slow releasing/slow bioconverting CPX prodrug delivery strategy resulted in significant dose de-escalation (~ five fold) while maintaining anti-tumor efficacy.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Carcinoma Intraductal no Infiltrante , Nanopartículas , Profármacos , Animales , Neoplasias de la Mama/tratamiento farmacológico , Carcinoma Intraductal no Infiltrante/tratamiento farmacológico , Ciclopirox/uso terapéutico , Femenino , Humanos , Ratas
5.
Antioxidants (Basel) ; 10(5)2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34063003

RESUMEN

The study aims to develop high drug-loaded (about 15% lipid matrix) curcumin solid lipid nanoparticles (CSLNs) for wound healing. CSLNs prepared by hot, high-pressure homogenization, without using organic solvents, were optimized using the Taguchi design followed by the central composite design. The optimized CSLNs exhibited a high assay/drug content (0.6% w/w), solubility (6 × 105 times), and EE (75%) with a particle size < 200 nm (PDI-0.143). The CSLNs were safe (in vitro and in vivo), photostable, autoclavable, stable up to one year at 30 °C and under refrigeration and exhibited a controlled release (zero-order; 5 days). XRD, FTIR, and DSC confirmed solubilization and entrapment of the curcumin within the SLNs. TEM and FESEM revealed a smooth and spherical shape. The CSLNs showed a significant antimicrobial effect (MIC of 64 µg/mL for planktonic cells; 512 µg/mL for biofilm formation; and 2 mg/mL for mature biofilm) against Staphylococcus aureus 9144, while free curcumin dispersion did not exhibit any effect. This is the first report on the disruption of mature biofilms by curcumin solid lipid nanoparticles (CSLNs). The cell proliferation potential of CSLNs was also evaluated in vitro while the wound healing potential of CSLNs (incorporated in a hydrogel) was assessed in vivo. In (i) nitrogen mustard gas and (ii) a full-thickness excision wound model, CSLNs exhibited (a) significantly faster wound closure, (b) histologically and immunohistochemically better healing, (c) lower oxidative stress (LPO) and (d) inflammation (TNFα), and (e) increased angiogenesis (VEGF) and antioxidant enzymes, i.e., catalase and GSH levels. CSLNs thus offer a promising modern wound therapy especially for infected wounds, considering their effects in mature biofilm disruption.

6.
Mol Pharm ; 18(3): 1093-1101, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33440941

RESUMEN

Nanocarriers (NCs) are an attractive class of vehicles for drug delivery with the potential to improve drug efficacy and safety, particularly for intravenous parenteral delivery. Many therapeutics remain challenging to formulate in NCs due to their intrinsic solubilities that frustrate NC loading or result in too rapid release in vivo. Therapeutic conjugate approaches that alter the solubility of a conjugate "prodrug" have been used to enable NC formation and controlled release from NCs using labile linker chemistry. A limitation of this approach has been that a different linker chemistry must be used to produce an adjustable release rate for a single therapeutic. We report on a new approach where the therapeutic conjugate hydrolysis rates are varied by adjusting the excipient formulation of the NC core, not the conjugate linker chemistry. A hydrophobic therapeutic conjugate of camptothecin (PROCPT) is synthesized by conjugating camptothecin (CPT) with an acid derivative of α-tocopherol (vitamin E). The PROCPT compound can be loaded to 50% wt in poly(lactic acid)-block-poly(ethylene glycol) (PLA-b-PEG)-stabilized NCs produced by Flash NanoPrecipitation with particle diameters between 60 and 80 nm. Co-loading a zwitterionic lipid, 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine, from 0 to 67% core loading tunes the PROCPT hydrolysis from no observable therapeutic release over 200 h to therapeutic conjugate half-life times of 31 h. For a single therapeutic conjugate molecule, the hydrolysis rate can be tuned by modifying the NC formulation with different excipient concentrations. NCs containing a 50% core loading of PROCPT were lyophilized and encapsulated in a PEG hydrogel matrix to make microparticles for depot delivery with an average diameter of 65 ± 10 µm that provide a sustained, first-order release of CPT with a therapeutic conjugate half-life of 240 h. These results demonstrate a new approach to the formulation of therapeutic NCs with variable release profiles using a single molecular entity therapeutic conjugate.


Asunto(s)
Camptotecina/química , Preparaciones de Acción Retardada/química , Portadores de Fármacos/química , Excipientes/química , Microgeles/química , Nanopartículas/química , Profármacos/química , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos/efectos de los fármacos , Estabilidad de Medicamentos , Hidrólisis/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Lactatos/química , Poliésteres/química , Polietilenglicoles/química , Solubilidad/efectos de los fármacos , alfa-Tocoferol/química
7.
Exp Mol Pathol ; 115: 104470, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32445752

RESUMEN

Sulfur mustard (SM), a dermal vesicant that has been used in chemical warfare, causes inflammation, edema and epidermal erosions depending on the dose and time following exposure. Herein, a minipig model was used to characterize wound healing following dermal exposure to SM. Saturated SM vapor caps were placed on the dorsal flanks of 3-month-old male Gottingen minipigs for 30 min. After 48 h the control and SM wounded sites were debrided daily for 7 days with wet to wet saline gauze soaks. Animals were then euthanized, and full thickness skin biopsies prepared for histology and immunohistochemistry. Control skin contained a well differentiated epidermis with a prominent stratum corneum. A well-developed eschar covered the skin of SM treated animals, however, the epidermis beneath the eschar displayed significant wound healing with a hyperplastic epidermis. Stratum corneum shedding and a multilayered basal epithelium consisting of cuboidal and columnar cells were also evident in the neoepidermis. Nuclear expression of proliferating cell nuclear antigen (PCNA) was contiguous in cells along the basal epidermal layer of control and SM exposed skin; SM caused a significant increase in PCNA expression in basal and suprabasal cells. SM exposure was also associated with marked changes in expression of markers of wound healing including increases in keratin 10, keratin 17 and loricrin and decreases in E-cadherin. Trichrome staining of control skin showed a well-developed collagen network with no delineation between the papillary and reticular dermis. Conversely, a major delineation was observed in SM-exposed skin including a web-like papillary dermis composed of filamentous extracellular matrix, and compact collagen fibrils in the lower reticular dermis. Although the dermis below the wound site was disrupted, there was substantive epidermal regeneration following SM-induced injury. Further studies analyzing the wound healing process in minipig skin will be important to provide a model to evaluate potential vesicant countermeasures.


Asunto(s)
Gas Mostaza/toxicidad , Piel/patología , Cicatrización de Heridas , Animales , Cadherinas/metabolismo , Diferenciación Celular/efectos de los fármacos , Epidermis/efectos de los fármacos , Epidermis/patología , Proteínas de la Membrana/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Piel/efectos de los fármacos , Porcinos , Porcinos Enanos , Cicatrización de Heridas/efectos de los fármacos
8.
J Control Release ; 323: 71-82, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-32302762

RESUMEN

INTRODUCTION: Ductal Carcinoma In Situ (DCIS) represents a significant fraction (~20-25%) of all newly diagnosed breast cancer cases and, if left untreated, a significant fraction of patients will progress to invasive disease. Surgery is the only treatment option. Ciclopirox (CPX), an FDA-approved antifungal drug, has exhibited promising antitumor activity by down-regulating the expression of vital antiapoptotic cellular proteins and inhibiting the genetic expression of several oncogenic pathways. In this study, the feasibility of using nanoscale delivery systems to control release and prolong mammary tissue persistence of a lipophilic metal complex of CPX and Zinc (CPXZn) after intraductal administration was investigated. METHODS: CPX and CPX-Zn nanosuspensions (NSs) were prepared using an evaporative nanoprecipitation-ultra-sonication method. Flash nanoprecipitation was used to prepare PLGA nanoparticles (NPs) loaded with CPXZn. Our established orthotopic DCIS rat model was used to evaluate efficacy. Briefly, two days after 13762 Mat B III cell intraductal inoculation, rats were divided into treatment groups and a single intraductal injection of CPX NS, CPX-Zn NS or CPX-Zn NPs was administered. In the first study arm, the efficacy of CPX NS (1, 3, 5 mg/duct) was evaluated. In the second arm, the in vivo efficacy of CPX NS, CPX-Zn NS and CPX-Zn loaded NPs was evaluated and compared at equivalent CPX doses. The mammary persistence of CPX from CPX NS, CPX-Zn NS, and CPX-Zn PLGA NPs was also assessed. RESULTS: CPX-Zn complex was successfully synthesized and characterized by several spectral analyses. CPX release was slowed from the CPX-Zn NS and further slowed by incorporating CPX-Zn into PLGA NPs as compared to the CPX NS with release half times following the order: CPX NS < CPX-Zn NS << CPX-Zn NP. Intraductal CPX NS administration was dose and time dependent in suppressing tumor initiation suggesting prolonged mammary exposure may improve efficacy. In the second arm, mammary tissue persistence of CPX followed the rank order CPX NS < CPX-Zn NS << CPX-Zn NP at 6 h and 48 h post-administration. Prolonged mammary CPX exposure was highly correlated to improved efficacy. Prolonged CPX tissue persistence, attributed to slower release from the zinc complex and the PLGA NPs, resulted in a 5-fold dose reduction compared to the CPX NS. CONCLUSIONS: The current results demonstrate that slowing drug release in the mammary duct after intraductal administration overcomes the rapid ductal clearance of CPX, prolongs mammary tissue persistence, improves efficacy against DCIS lesions in vivo, and requires 5-fold less CPX to achieve equivalent efficacy. The studies also provide a strategic path forward for developing a locally administered drug delivery system for treating DCIS, for which no primary chemotherapy option is available.


Asunto(s)
Neoplasias de la Mama , Carcinoma Intraductal no Infiltrante , Animales , Mama , Neoplasias de la Mama/tratamiento farmacológico , Carcinoma Intraductal no Infiltrante/tratamiento farmacológico , Ciclopirox/uso terapéutico , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Ratas
9.
Pharmaceutics ; 12(3)2020 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-32182675

RESUMEN

Persistent activation of macrophages (MP)s into a proinflammatory M1 or anti-inflammatory M2 phenotype plays a role in several pathological conditions, including autoimmune diseases, fibrosis, infections, atherosclerosis and tumor development. The mannose receptor (MR, CD206), expressed at low levels on resting MPs and absent on M1 MPs, is highly expressed on M2 MPs, making it a potential target and drug delivery portal. Recently, we developed a novel, highly selective MR targeting ligand (MRTL), consisting of two mannose molecules separated by a monodisperse 12 unit poly(ethylene glycol) linker, to enhance the cellular uptake of polymeric nanocarriers. The feasibility of using the MRTL ligand for selectively targeting M2 MPs for intracellular delivery of nanoparticles (NPs) was investigated. Rat peritoneal MPs were differentiated into an M1 or M2 phenotype using IFN-γ and IL-4/IL-13, respectively. Expression of the M1 marker, inducible nitric oxide synthase (iNOS), and the M2 markers arginase (Arg)-1 and MR (at both the mRNA and protein levels) confirmed MP phenotypic activation. Resting, M1 and M2 MPs were treated with fluorescein isothiocyanate (FITC)-labeled MRTL or NPs displaying FITC-labeled MRTL at two surface densities (1 and 10%) and examined by confocal microscopy. Intracellular fluorescence was also quantified. Uptake of the MRTL was 2.4- and 11.8-fold higher in M2 MPs when compared to resting or M1 MPs, respectively, consistent with marker expression levels. Mannan, a competitive inhibitor of the MR, abrogated MRTL uptake. MRTL also co-localized with a fluid-phase endocytosis marker, further suggesting that uptake was mediated by MR-mediated endocytosis. Intracellular NP fluorescence was confirmed by flow cytometry and by confocal microscopy. MRTL-NPs accumulated intracellularly with no significant cell surface binding, suggesting efficient translocation. NPs displaying a low surface density (1%) of the MRTL exhibited significantly higher (2.3-fold) uptake into M2 MPs, relative to resting and M1 MPs. The 10% MRTL-NPs displayed greater uptake by M2 MPs when compared to resting and M1 MPs, but less uptake than 1% MRTL-NPs into M2 MPs. Control FITC-labeled plain NPs did not exhibit selective MP uptake. These studies demonstrate that M2 MPs are selectively targeted by NPs displaying a novel bivalent ligand that utilizes the MR as a target/portal for cell entry. This study also establishes the feasibility of the approach allowing for further investigation in vivo.

10.
Eur J Pharm Biopharm ; 138: 11-22, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-29894816

RESUMEN

The feasibility of utilizing the cell surface chemokine receptor CXCR4 for human immunodeficiency virus (HIV) entry inhibition and as an intracellular portal for targeted drug delivery was evaluated. Novel DV3 ligands (1DV3, 2DV3, and 4DV3) were designed, synthesized and conjugated to various probes (fluorescein isothiocyanate (FITC) or biotin) and cargos with sizes ranging from 10 to 50 nm (polyethylene glycol (PEG), streptavidin, and a polymeric nanoparticle). 4DV3 conjugated probes inhibited HIV-1 entry into the CXCR4-expressing reporter cell line TZM-bl (IC50 at 553 nM) whereas 1DV3 and 2DV3 did not. 4DV3 also inhibited binding of anti-CXCR4 antibody 44,708 to TZM-bl cells with nanomolar potency, while the small-molecule CXCR4 antagonist AMD3100 did not. Molecular modeling suggested simultaneous binding of a single 4DV3 molecule to four CXCR4 molecules. Differences in CXCR4-binding sites could explain the discrete inhibitory effects observed for 4DV3, the 44,708 antibody and AMD3100. In the Sup-T1 cell chemotaxis assay, the 4DV3 ligand functioned as a CXCR4 allosteric enhancer. In addition, 4DV3 ligand-conjugated cargos with sizes ranging from 10 to 50 nm were taken up into CXCR4-expressing Sup-T1 and TZM-bl cells, demonstrating that CXCR4 could serve as a drug delivery portal for nanocarriers. The uptake of 4DV3 functionalized nanocarriers combined with the allosteric interaction with CXCR4 suggests enhanced endocytosis occurs when 4DV3 is the targeting ligand. The current results indicate that 4DV3 might serve as a prototype for a new type of dual function ligand, one that acts as a HIV-1 entry inhibitor and a CXCR4 drug delivery targeting ligand.


Asunto(s)
Fármacos Anti-VIH/farmacología , Inhibidores de Fusión de VIH/farmacología , Infecciones por VIH/tratamiento farmacológico , Receptores CXCR4/metabolismo , Sitios de Unión , Línea Celular , Quimiotaxis/efectos de los fármacos , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Infecciones por VIH/metabolismo , VIH-1/efectos de los fármacos , Humanos , Ligandos , Nanopartículas/química , Transducción de Señal/efectos de los fármacos
11.
J Interdiscip Nanomed ; 3(3): 146-159, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30443411

RESUMEN

Ductal carcinoma in situ is the most commonly diagnosed early stage breast cancer. The efficacy of intraductally delivered poly(ethylene glycol)-doxorubicin (PEG-DOX) nanocarriers, composed of one or more DOX conjugated to various PEG polymers, was investigated in an orthotopic ductal carcinoma in situ-like rat model. In vitro cytotoxicity was evaluated against 13762 Mat B III cells using MTT assay. The orthotopic model was developed by inoculating cancer cells into mammary ducts of female Fischer 344 retired breeder rats. The ductal retention and in vivo antitumour efficacy of two of the six nanocarriers (5 kDa PEG-DOX and 40 kDa PEG-(DOX)4) were investigated based on in vitro results. Mammary retention of DOX and PEG-DOX nanocarriers was quantified using in vivo imaging. Histopathologic effects of DOX and PEG-DOX nanocarriers on mammary ductal structure were also investigated. Cytotoxicities of small linear PEG-DOX nanocarriers (5 and 10 kDa) were not different from DOX whereas larger PEG-DOX nanocarriers showed reduced potency. The order of mammary retention was 40 kDa PEG-(DOX)4 > 5 kDa PEG-DOX >> DOX, in normal and tumour-bearing rats. Intraductally administered PEG-DOX nanocarriers and DOX were effective in reducing tumour incidence and increasing survival rate, with no significant differences found among the three treatment groups. However, nanocarriers administered intravenously at the same doses were not effective, and intraductally administered free DOX caused severe local toxicity. Intraductal administration of PEG-DOX nanocarriers is effective and less toxic than that of free DOX, as well as IV DOX/PEG-DOX. Furthermore, PEG-DOX nanocarriers demonstrate the added benefit of prolonging DOX ductal retention, which would necessitate less frequent dosing.

12.
Eur J Pharm Sci ; 121: 118-125, 2018 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-29698706

RESUMEN

Although systemic administration of chemotherapeutic agents is routinely used for treating invasive breast cancer, the only therapeutic options for ductal carcinoma in situ (DCIS) are surgery and radiation. Treating DCIS by delivering drugs locally to the affected milk duct offers significant advantages over systemic administration, including reduced systemic and breast toxicities, as well as a greatly reduced need for surgery and radiation. In this study, mammary gland retention and toxicity of intraductally administered poly(ethylene) glycol-doxorubicin (PEG-DOX) polymeric conjugate nanocarriers of varying molecular sizes and architectures were investigated. Nanocarriers were formed by conjugating one or more copies of doxorubicin to PEG polymers, of varying molecular weights (5, 10, 20, and 40 kDa) and architectures (linear, four-arm and eight-arm). Cytotoxicity against MCF7 cells, a human breast cancer cell line, was assessed, and IC50 values were calculated. The nanocarriers were intraductally administered into the mammary glands of female retired breeder Sprague-Dawley rats. Whole body images were captured using in vivo optical imaging, and changes in ductal structure as well local inflammation were monitored. Fluorescence intensities were monitored, over time, to evaluate nanocarrier mammary gland retention half-lives (t1/2). The IC50 values of PEG-DOX nanocarriers against MCF7 cells were 40 kDa PEG-(DOX)4 (1.23 µM) < 5 kDa PEG-DOX (1.76 µM) < 40 kDa PEG-(DOX)8 (3.49 µM) < 10 kDa PEG-DOX (3.86 µM) < 20 kDa PEG-DOX (8.96 µM) < 40 kDa PEG-DOX (18.11 µM), whereas the IC50 of free DOX was only 0.14 µM. The t1/2 of linear 5, 20, and 40 kDa nanocarriers were 2.2 ±â€¯0.3, 3.6 ±â€¯0.6, and 13.1 ±â€¯3.4 h, whereas the retention t1/2 of 4- and 8-arm 40 kDa nanocarriers were 14.9 ±â€¯5.6 h and 11.9 ±â€¯2.9 h, respectively. The retention t1/2 of free doxorubicin was 2.0 ±â€¯0.4 h, which was significantly shorter than that of the linear and branched 40 kDa PEG-DOX nanocarriers. Increased molecular weight and decreased branching both demonstrated a strong correlation to enhanced mammary gland retention. Intraductally administered free doxorubicin resulted in ductal damage, severe inflammation and generation of atypical cell neoplasms, whereas PEG-DOX nanocarriers induced only minor and transient inflammation (i.e., damaged epithelial cells and detached cellular debris). The 40 kDa 4-arm PEG-DOX nanocarrier demonstrated the longest ductal retention half-life, the lowest IC50 (i.e., most potent), and minimal ductal damage and inflammation. The current results suggest that PEG-DOX nanocarriers with prolonged ductal retention may present the best option for intraductal treatment of DCIS, due to their low local toxicity and potential for sustained therapeutic effect.


Asunto(s)
Antineoplásicos/administración & dosificación , Doxorrubicina/administración & dosificación , Portadores de Fármacos/administración & dosificación , Glándulas Mamarias Animales/metabolismo , Nanoestructuras/administración & dosificación , Polietilenglicoles/administración & dosificación , Animales , Antineoplásicos/química , Carcinoma Intraductal no Infiltrante/tratamiento farmacológico , Carcinoma Intraductal no Infiltrante/metabolismo , Doxorrubicina/química , Vías de Administración de Medicamentos , Portadores de Fármacos/química , Femenino , Humanos , Células MCF-7 , Neoplasias Mamarias Animales/tratamiento farmacológico , Neoplasias Mamarias Animales/metabolismo , Nanoestructuras/química , Polietilenglicoles/química , Ratas Sprague-Dawley
13.
Mol Ther Nucleic Acids ; 5: e302, 2016 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-27045206

RESUMEN

The development of a convenient and sensitive biosensing system to detect specific DNA sequences is an important issue in the field of genetic disease therapy. As a classic DNA detection technique, molecular beacon (MB) is often used in the biosensing system. However, it has intrinsic drawbacks, including high assay cost, complicated chemical modification, and operational complexity. In this study, we developed a simple and cost-effective label-free multifunctional MB (LMMB) by integrating elements of polymerization primer, template, target recognition, and G-quadruplex into one entity to detect target DNA. The core technique was accomplished by introducing a G-hairpin that features fragments of both G-quadruplex and target DNA recognition in the G-hairpin stem. Hybridization between LMMB and target DNA triggered conformational change between the G-hairpin and the common C-hairpin, resulting in significant SYBR-green signal amplification. The hybridization continues to the isothermal circular strand-displacement polymerization and accumulation of the double-stranded fragments, causing the uninterrupted extension of the LMMB without a need of chemical modification and other assistant DNA sequences. The novel and programmable LMMB could detect target DNA with sensitivity at 250 pmol/l with a linear range from 2 to 100 nmol/l and the relative standard deviation of 7.98%. The LMMB could sense a single base mutation from the normal DNA, and polymerase chain reaction (PCR) amplicons of the mutant-type cell line from the wild-type one. The total time required for preparation and assaying was only 25 minutes. Apparently, the LMMB shows great potential for detecting DNA and its mutations in biosamples, and therefore it opens up a new prospect for genetic disease therapy.

14.
Small ; 12(19): 2595-608, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27027489

RESUMEN

The circulating tumor cells (CTCs) existing in cancer survivors are considered the root cause of cancer metastasis. To prevent the devastating metastasis cascade from initiation, we hypothesize that a biodegradable nanomaterial loaded with the abortifacient mifepristone (MIF) and conjugated with the epithelial cell adhesion molecule antibody (aEpCAM) may serve as a safe and effective cancer metastatic preventive agent by targeting CTCs and preventing their adhesion-invasion to vascular intima. It is demonstrated that MIF-loaded mesoporous silica nanoparticles (MSN) coated with aEpCAM (aE-MSN-M) can specifically target and bind colorectal cancer cells in either cell medium or blood through EpCAM recognition proven by quantitative flow cytometric detection and free aEpCAM competitive assay. The specific binding results in downregulation of the captured cells and drives them into G0/G1 phase primarily attributed to the effect of aEpCAM. The functional nanoparticles significantly inhibit the heteroadhesion between cancer cells and endothelial cells, suggesting the combined inhibition effects of aEpCAM and MIF on E-selectin and ICAM-1 expression. The functionalized nanoparticles circulate in mouse blood long enough to deliver MIF and inhibit lung metastasis. The present proof-of-concept study shows that the aE-MSN-M can prevent cancer metastasis by restraining CTC activity and their adhesion-invasion to vascular intima.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/secundario , Molécula de Adhesión Celular Epitelial/inmunología , Mifepristona/administración & dosificación , Nanocápsulas/química , Dióxido de Silicio/química , Abortivos Esteroideos/administración & dosificación , Abortivos Esteroideos/química , Absorción Fisicoquímica , Animales , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/química , Apoptosis/efectos de los fármacos , Neoplasias Colorrectales/inmunología , Difusión , Sistemas de Liberación de Medicamentos/métodos , Reposicionamiento de Medicamentos , Células HT29 , Humanos , Ratones , Mifepristona/química , Nanocápsulas/ultraestructura , Nanoconjugados/administración & dosificación , Nanoconjugados/química , Nanoporos/ultraestructura , Resultado del Tratamiento
15.
Nanomedicine ; 12(1): 13-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26427355

RESUMEN

USA and China are two leading countries engaged in nanotechnology research and development. They compete with each other for fruits in this innovative area in a parallel and compatible manner. Understanding the status and developmental prospects of nanotechnology in USA and China is important for policy-makers to decide nanotechnology priorities and funding, and to explore new ways for global cooperation on key issues. We here present the nanoscience and nanomedicine research and the related productivity measured by publications, and patent applications, governmental funding, policies and regulations, institutional translational research, industrial and enterprise growth in nanotechnology-related fields across China and USA. The comparison reveals some marked asymmetries of nanotechnology development in China and USA, which may be helpful for future directions to strengthen nanotechnology collaboration for both countries, and for the world as a whole.


Asunto(s)
Internacionalidad , Modelos Organizacionales , Nanotecnología/organización & administración , Objetivos Organizacionales , Investigación/organización & administración , Ciencia/organización & administración , China , Estados Unidos
16.
Drug Deliv Transl Res ; 6(1): 1-16, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26712122

RESUMEN

Local delivery of anti-HIV drugs to the colorectal mucosa, a major site of HIV replication, and their retention within mucosal tissue would allow for a reduction in dose administered, reduced dosing frequency and minimal systemic exposure. The current report describes a mucosal pre-exposure prophylaxis (mPrEP) strategy that utilizes nanocarrier conjugates (NC) consisting of poly(ethylene glycol) (PEG), amprenavir (APV), and a cell-penetrating peptide (CPP; namely Bac7, a fragment derived from bactenecin 7). APV-PEG NCs with linear PEGs (2, 5, 10, and 30 kDa) exhibited reduced (52-21%) anti-HIV-1 protease (PR) activity as compared to free APV in an enzyme-based FRET assay. In MT-2 T cells, APV-PEG3.4 kDa-FITC (APF) anti-HIV-1 activity was significantly reduced (160-fold, IC50 = 8064 nM) due to poor cell uptake, whereas it was restored (IC50 = 78.29 nM) and similar to APV (IC50 = 50.29 nM) with the addition of Bac7 to the NC (i.e., APV-PEG3.4 kDa-Bac7, APB). Flow cytometry and confocal microscopy demonstrated Bac7-PEG3.4 kDa-FITC (BPF) uptake was two- and fourfold higher than APF in MT-2 T cells and Caco-2 intestinal epithelial cells, respectively. There was no detectable punctate fluorescence in either cell line suggesting that BPF directly enters the cytosol thus avoiding endosomal entrapment. After colorectal administration in mice, BPF mucosal concentrations were 21-fold higher than APF concentrations. BPF concentrations also remained constant for the 5 days of the study suggesting that (1) the NC's structural characteristics (i.e., the size of the PEG carrier and the presence of a CPP) significantly influenced tissue persistence, and (2) the NCs were probably lodged in the lamina propria since the average rodent colon mucosal cell turnover time is 2-3 days. These encouraging results suggest that Bac7 functionalized NCs delivered locally to the colorectal mucosa may form drug delivery depots that are capable of sustaining colorectal drug concentrations. Although the exact mechanisms for tissue persistence are unclear and will require further study, these results provide proof-of-concept feasibility for mPrEP.


Asunto(s)
Carbamatos/administración & dosificación , Infecciones por VIH/prevención & control , Inhibidores de la Proteasa del VIH/administración & dosificación , VIH-1 , Mucosa Intestinal/virología , Nanoconjugados/administración & dosificación , Profilaxis Pre-Exposición/métodos , Sulfonamidas/administración & dosificación , Administración Rectal , Animales , Células CACO-2 , Péptidos de Penetración Celular/administración & dosificación , Furanos , Proteasa del VIH/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos , Péptidos Cíclicos/administración & dosificación , Polietilenglicoles/administración & dosificación
17.
J Control Release ; 219: 669-680, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26315816

RESUMEN

The year 2016 will mark an important milestone - the 35th anniversary of the first reported cases of HIV/AIDS. Antiretroviral Therapy (ART) including Highly Active Antiretroviral Therapy (HAART) drug regimens is widely considered to be one of the greatest achievements in therapeutic drug research having transformed HIV infection into a chronically managed disease. Unfortunately, the lack of widespread preventive measures and the inability to eradicate HIV from infected cells highlight the significant challenges remaining today. Moving forward there are at least three high priority goals for anti-HIV drug delivery (DD) research: (1) to prevent new HIV infections from occurring, (2) to facilitate a functional cure, i.e., when HIV is present but the body controls it without drugs and (3) to eradicate established infection. Pre-exposure Prophylaxis (PrEP) represents a significant step forward in preventing the establishment of chronic HIV infection. However, the ultimate success of PrEP will depend on achieving sustained antiretroviral (ARV) tissue concentrations and will require strict patient adherence to the regimen. While first generation long acting/extended release (LA/ER) DD Systems (DDS) currently in development show considerable promise, significant DD treatment and prevention challenges persist. First, there is a critical need to improve cell specificity through targeting in order to selectively achieve efficacious drug concentrations in HIV reservoir sites to control/eradicate HIV as well as mitigate systemic side effects. In addition, approaches for reducing cellular efflux and metabolism of ARV drugs to prolong effective concentrations in target cells need to be developed. Finally, given the current understanding of HIV pathogenesis, next generation anti-HIV DDS need to address selective DD to the gut mucosa and lymph nodes. The current review focuses on the DDS technologies, critical challenges, opportunities, strategies, and approaches by which novel delivery systems will help iterate towards prevention, functional cure and eventually the eradication of HIV infection.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Fármacos Anti-VIH/administración & dosificación , Sistemas de Liberación de Medicamentos , Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida/prevención & control , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/prevención & control , Humanos , Profilaxis Pre-Exposición
18.
Colloids Surf B Biointerfaces ; 133: 81-7, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26091943

RESUMEN

We have developed responsive foam systems for nanoparticle delivery. The foams are easy to make, stable at room temperature, and can be engineered to break in response to temperature or moisture. Temperature-responsive foams are based on the phase transition of long chain alcohols and could be produced using medical grade nitrous oxide as a propellant. These temperature-sensitive foams could be used for polyacrylic acid (PAA)-based nanoparticle delivery. We also discuss moisture-responsive foams made with soap pump dispensers. Polyethylene glycol (PEG)-based nanoparticles or PMMA latex nanoparticles were loaded into Tween 20 foams and the particle size was not affected by the foam formulation or foam break. Using biocompatible detergents, we anticipate this will be a versatile and simple approach to producing foams for nanoparticle delivery with many potential pharmaceutical and personal care applications.


Asunto(s)
Nanopartículas , Resinas Acrílicas/administración & dosificación , Temperatura
19.
Adv Healthc Mater ; 4(9): 1376-85, 2015 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-25925128

RESUMEN

Magnetic resonance imaging (MRI)- and near-infrared (NIR)-active, multimodal composite nanocarriers (CNCs) are prepared using a simple one-step process, flash nanoprecipitation (FNP). The FNP process allows for the independent control of the hydrodynamic diameter, co-core excipient and NIR dye loading, and iron oxide-based nanocrystal (IONC) content of the CNCs. In the controlled precipitation process, 10 nm IONCs are encapsulated into poly(ethylene glycol) (PEG) stabilized CNCs to make biocompatible T2 contrast agents. By adjusting the formulation, CNC size is tuned between 80 and 360 nm. Holding the CNC size constant at an intensity weighted average diameter of 99 ± 3 nm (PDI width 28 nm), the particle relaxivity varies linearly with encapsulated IONC content ranging from 66 to 533 × 10(-3) m(-1) s(-1) for CNCs formulated with 4-16 wt% IONC. To demonstrate the use of CNCs as in vivo MRI contrast agents, CNCs are surface functionalized with liver-targeting hydroxyl groups. The CNCs enable the detection of 0.8 mm(3) non-small cell lung cancer metastases in mice livers via MRI. Incorporating the hydrophobic, NIR dye tris-(porphyrinato)zinc(II) into CNCs enables complementary visualization with long-wavelength fluorescence at 800 nm. In vivo imaging demonstrates the ability of CNCs to act both as MRI and fluorescent imaging agents.


Asunto(s)
Medios de Contraste , Portadores de Fármacos , Compuestos Férricos , Imagen por Resonancia Magnética/métodos , Nanopartículas/química , Imagen Óptica/métodos , Animales , Medios de Contraste/química , Medios de Contraste/farmacología , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Compuestos Férricos/química , Compuestos Férricos/farmacología , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacología , Ratones , Tamaño de la Partícula , Polietilenglicoles/química , Polietilenglicoles/farmacología
20.
Cancer ; 121(17): 3036-45, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25945459

RESUMEN

BACKGROUND: This study was aimed at establishing a sensitive and specific isolation, characterization, and enumeration method for living circulating tumor cells (CTCs) in patients with colorectal carcinoma. METHODS: Quantitative isolation and characterization of CTCs were performed through a combination of immunomagnetic negative enrichment and fluorescence-activated cell sorting. Isolated CTCs were identified by immunofluorescence staining. The viability and purity of the sorted cells were determined by flow cytometry. Blood samples spiked with HCT116 cells (range, 3-250 cells) were used to determine specificity, recovery, and sensitivity. The method was used to enumerate, characterize, and isolate living CTCs in 10 mL of blood from patients with colorectal carcinoma. RESULTS: The average recovery of HCT116 cells was 61% or more at each spiking level, and the correlation coefficient was 0.992. An analysis of samples from all 18 patients with colorectal carcinoma revealed that 94.4% were positive for CTCs with an average of 33 ± 24 CTCs per 10 mL of blood and with a diameter of 14 to 20 µm (vs 8-12 µm for lymphoma). All patients were CD47(+) , with only 4.3% to 61.2% being CD44(+) . The number of CTCs was well correlated with the patient TNM stage and could be detected in patients at an early cancer stage. The sorted cells could be recultured, and their viability was preserved. CONCLUSIONS: This method provides a novel technique for highly sensitive and specific detection and isolation of CTCs in patients with colorectal carcinoma. This method complements the existing approaches for the de novo functional identification of a wide variety of CTC types. It is likely to help in predicting a patient's disease progression and potentially in selecting the appropriate treatment.


Asunto(s)
Neoplasias Colorrectales/patología , Células Neoplásicas Circulantes/patología , Antígeno CD47/metabolismo , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Citometría de Flujo , Humanos , Receptores de Hialuranos/metabolismo , Separación Inmunomagnética , Estadificación de Neoplasias , Células Neoplásicas Circulantes/metabolismo , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...