Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Biomed Eng ; 8(3): 233-247, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37474612

RESUMEN

Protein glycosylation, a complex and heterogeneous post-translational modification that is frequently dysregulated in disease, has been difficult to analyse at scale. Here we report a data-independent acquisition technique for the large-scale mass-spectrometric quantification of glycopeptides in plasma samples. The technique, which we named 'OxoScan-MS', identifies oxonium ions as glycopeptide fragments and exploits a sliding-quadrupole dimension to generate comprehensive and untargeted oxonium ion maps of precursor masses assigned to fragment ions from non-enriched plasma samples. By applying OxoScan-MS to quantify 1,002 glycopeptide features in the plasma glycoproteomes from patients with COVID-19 and healthy controls, we found that severe COVID-19 induces differential glycosylation in IgA, haptoglobin, transferrin and other disease-relevant plasma glycoproteins. OxoScan-MS may allow for the quantitative mapping of glycoproteomes at the scale of hundreds to thousands of samples.


Asunto(s)
COVID-19 , Glicopéptidos , Humanos , Espectrometría de Masas , Glicosilación , Glicopéptidos/análisis , Glicopéptidos/química , Glicopéptidos/metabolismo , Iones
2.
Anal Chem ; 94(22): 7779-7786, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35613060

RESUMEN

Proteome-wide crosslinking mass spectrometry studies have coincided with the advent of mass spectrometry (MS)-cleavable crosslinkers that can reveal the individual masses of the two crosslinked peptides. However, recently, such studies have also been published with noncleavable crosslinkers, suggesting that MS-cleavability is not essential. We therefore examined in detail the advantages and disadvantages of using the commonly used MS-cleavable crosslinker, disuccinimidyl sulfoxide (DSSO). Indeed, DSSO gave rise to signature peptide fragments with a distinct mass difference (doublet) for nearly all identified crosslinked peptides. Surprisingly, we could show that it was not these peptide masses that proved the main advantage of MS cleavability of the crosslinker, but improved peptide backbone fragmentation which reduces the ambiguity of peptide identifications. This also holds true for another commonly used MS-cleavable crosslinker, DSBU. We show furthermore that the more intricate MS3-based data acquisition approaches lack sensitivity and specificity, causing them to be outperformed by the simpler and faster stepped higher-energy collisional dissociation (HCD) method. This understanding will guide future developments and applications of proteome-wide crosslinking mass spectrometry.


Asunto(s)
Péptidos , Proteoma , Reactivos de Enlaces Cruzados/química , Espectrometría de Masas/métodos , Péptidos/química
3.
Anal Chem ; 94(11): 4627-4634, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35276035

RESUMEN

Ion-mobility spectrometry shows great promise to tackle analytically challenging research questions by adding another separation dimension to liquid chromatography-mass spectrometry. The understanding of how analyte properties influence ion mobility has increased through recent studies, but no clear rationale for the design of customized experimental settings has emerged. Here, we leverage machine learning to deepen our understanding of field asymmetric waveform ion-mobility spectrometry for the analysis of cross-linked peptides. Knowing that predominantly m/z and then the size and charge state of an analyte influence the separation, we found ideal compensation voltages correlating with the size exclusion chromatography fraction number. The effect of this relationship on the analytical depth can be substantial as exploiting it allowed us to almost double unique residue pair detections in a proteome-wide cross-linking experiment. Other applications involving liquid- and gas-phase separation may also benefit from considering such parameter dependencies.


Asunto(s)
Espectrometría de Movilidad Iónica , Proteoma , Cromatografía en Gel , Cromatografía Liquida , Espectrometría de Movilidad Iónica/métodos , Espectrometría de Masas/métodos
4.
PLoS Pathog ; 17(8): e1009775, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34339457

RESUMEN

Viruses have evolved means to manipulate the host's ubiquitin-proteasome system, in order to down-regulate antiviral host factors. The Vpx/Vpr family of lentiviral accessory proteins usurp the substrate receptor DCAF1 of host Cullin4-RING ligases (CRL4), a family of modular ubiquitin ligases involved in DNA replication, DNA repair and cell cycle regulation. CRL4DCAF1 specificity modulation by Vpx and Vpr from certain simian immunodeficiency viruses (SIV) leads to recruitment, poly-ubiquitylation and subsequent proteasomal degradation of the host restriction factor SAMHD1, resulting in enhanced virus replication in differentiated cells. To unravel the mechanism of SIV Vpr-induced SAMHD1 ubiquitylation, we conducted integrative biochemical and structural analyses of the Vpr protein from SIVs infecting Cercopithecus cephus (SIVmus). X-ray crystallography reveals commonalities between SIVmus Vpr and other members of the Vpx/Vpr family with regard to DCAF1 interaction, while cryo-electron microscopy and cross-linking mass spectrometry highlight a divergent molecular mechanism of SAMHD1 recruitment. In addition, these studies demonstrate how SIVmus Vpr exploits the dynamic architecture of the multi-subunit CRL4DCAF1 assembly to optimise SAMHD1 ubiquitylation. Together, the present work provides detailed molecular insight into variability and species-specificity of the evolutionary arms race between host SAMHD1 restriction and lentiviral counteraction through Vpx/Vpr proteins.


Asunto(s)
Proteínas Cullin/química , Productos del Gen vpr/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Proteína 1 que Contiene Dominios SAM y HD/química , Ubiquitinación , Replicación Viral , Secuencia de Aminoácidos , Animales , Microscopía por Crioelectrón , Proteínas Cullin/metabolismo , Productos del Gen vpr/genética , Proteína NEDD8/química , Proteína NEDD8/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteína 1 que Contiene Dominios SAM y HD/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/fisiología , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo
5.
Nat Commun ; 12(1): 3564, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34117231

RESUMEN

Protein-protein interactions govern most cellular pathways and processes, and multiple technologies have emerged to systematically map them. Assessing the error of interaction networks has been a challenge. Crosslinking mass spectrometry is currently widening its scope from structural analyses of purified multi-protein complexes towards systems-wide analyses of protein-protein interactions (PPIs). Using a carefully controlled large-scale analysis of Escherichia coli cell lysate, we demonstrate that false-discovery rates (FDR) for PPIs identified by crosslinking mass spectrometry can be reliably estimated. We present an interaction network comprising 590 PPIs at 1% decoy-based PPI-FDR. The structural information included in this network localises the binding site of the hitherto uncharacterised protein YacL to near the DNA exit tunnel on the RNA polymerase.


Asunto(s)
Espectrometría de Masas/métodos , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Mapas de Interacción de Proteínas/genética , Proteoma
6.
Nat Commun ; 12(1): 3237, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34050149

RESUMEN

Crosslinking mass spectrometry has developed into a robust technique that is increasingly used to investigate the interactomes of organelles and cells. However, the incomplete and noisy information in the mass spectra of crosslinked peptides limits the numbers of protein-protein interactions that can be confidently identified. Here, we leverage chromatographic retention time information to aid the identification of crosslinked peptides from mass spectra. Our Siamese machine learning model xiRT achieves highly accurate retention time predictions of crosslinked peptides in a multi-dimensional separation of crosslinked E. coli lysate. Importantly, supplementing the search engine score with retention time features leads to a substantial increase in protein-protein interactions without affecting confidence. This approach is not limited to cell lysates and multi-dimensional separation but also improves considerably the analysis of crosslinked multiprotein complexes with a single chromatographic dimension. Retention times are a powerful complement to mass spectrometric information to increase the sensitivity of crosslinking mass spectrometry analyses.


Asunto(s)
Redes Neurales de la Computación , Mapeo de Interacción de Proteínas/métodos , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía de Fase Inversa/métodos , Reactivos de Enlaces Cruzados , Escherichia coli , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Péptidos/química , Péptidos/metabolismo , Factores de Tiempo
7.
ACS Cent Sci ; 7(1): 81-92, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33532571

RESUMEN

Organofluorine compounds are known to be toxic to a broad variety of living beings in different habitats, and chemical fluorination has been historically exploited by mankind for the development of therapeutic drugs or agricultural pesticides. On the other hand, several studies so far have demonstrated that, under appropriate conditions, living systems (in particular bacteria) can tolerate the presence of fluorinated molecules (e.g., amino acids analogues) within their metabolism and even repurpose them as alternative building blocks for the synthesis of cellular macromolecules such as proteins. Understanding the molecular mechanism behind these phenomena would greatly advance approaches to the biotechnological synthesis of recombinant proteins and peptide drugs. However, information about the metabolic effects of long-term exposure of living cells to fluorinated amino acids remains scarce. Hereby, we report the long-term propagation of Escherichia coli (E. coli) in an artificially fluorinated habitat that yielded two strains naturally adapted to live on fluorinated amino acids. In particular, we applied selective pressure to force a tryptophan (Trp)-auxotrophic strain to use either 4- or 5-fluoroindole as essential precursors for the in situ synthesis of Trp analogues, followed by their incorporation in the cellular proteome. We found that full adaptation to both fluorinated Trp analogues requires a low number of genetic mutations but is accompanied by large rearrangements in regulatory networks, membrane integrity, and quality control of protein folding. These findings highlight the cellular mechanisms behind the adaptation to unnatural amino acids and provide the molecular foundation for bioengineering of novel microbial strains for synthetic biology and biotechnology.

8.
Science ; 369(6503): 554-557, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32732422

RESUMEN

Structural biology studies performed inside cells can capture molecular machines in action within their native context. In this work, we developed an integrative in-cell structural approach using the genome-reduced human pathogen Mycoplasma pneumoniae We combined whole-cell cross-linking mass spectrometry, cellular cryo-electron tomography, and integrative modeling to determine an in-cell architecture of a transcribing and translating expressome at subnanometer resolution. The expressome comprises RNA polymerase (RNAP), the ribosome, and the transcription elongation factors NusG and NusA. We pinpointed NusA at the interface between a NusG-bound elongating RNAP and the ribosome and propose that it can mediate transcription-translation coupling. Translation inhibition dissociated the expressome, whereas transcription inhibition stalled and rearranged it. Thus, the active expressome architecture requires both translation and transcription elongation within the cell.


Asunto(s)
Mycoplasma pneumoniae/metabolismo , Mycoplasma pneumoniae/ultraestructura , Extensión de la Cadena Peptídica de Translación , Mapas de Interacción de Proteínas , Transcripción Genética , Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Genoma Bacteriano , Humanos , Mycoplasma pneumoniae/genética , Factores de Elongación de Péptidos/metabolismo , Ribosomas/metabolismo , Transcriptoma
9.
Nat Struct Mol Biol ; 27(8): 743-751, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32661420

RESUMEN

Complexes containing a pair of structural maintenance of chromosomes (SMC) family proteins are fundamental for the three-dimensional (3D) organization of genomes in all domains of life. The eukaryotic SMC complexes cohesin and condensin are thought to fold interphase and mitotic chromosomes, respectively, into large loop domains, although the underlying molecular mechanisms have remained unknown. We used cryo-EM to investigate the nucleotide-driven reaction cycle of condensin from the budding yeast Saccharomyces cerevisiae. Our structures of the five-subunit condensin holo complex at different functional stages suggest that ATP binding induces the transition of the SMC coiled coils from a folded-rod conformation into a more open architecture. ATP binding simultaneously triggers the exchange of the two HEAT-repeat subunits bound to the SMC ATPase head domains. We propose that these steps result in the interconversion of DNA-binding sites in the catalytic core of condensin, forming the basis of the DNA translocation and loop-extrusion activities.


Asunto(s)
Proteínas Portadoras/química , Proteínas Cromosómicas no Histona/química , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/ultraestructura , Adenosina Trifosfato/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/ultraestructura , Proteínas de Ciclo Celular , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/ultraestructura , Microscopía por Crioelectrón , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/ultraestructura , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestructura , Conformación Proteica , Pliegue de Proteína , Multimerización de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura
10.
Nature ; 578(7796): 627-630, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025030

RESUMEN

Thyroglobulin (TG) is the protein precursor of thyroid hormones, which are essential for growth, development and the control of metabolism in vertebrates1,2. Hormone synthesis from TG occurs in the thyroid gland via the iodination and coupling of pairs of tyrosines, and is completed by TG proteolysis3. Tyrosine proximity within TG is thought to enable the coupling reaction but hormonogenic tyrosines have not been clearly identified, and the lack of a three-dimensional structure of TG has prevented mechanistic understanding4. Here we present the structure of full-length human thyroglobulin at a resolution of approximately 3.5 Å, determined by cryo-electron microscopy. We identified all of the hormonogenic tyrosine pairs in the structure, and verified them using site-directed mutagenesis and in vitro hormone-production assays using human TG expressed in HEK293T cells. Our analysis revealed that the proximity, flexibility and solvent exposure of the tyrosines are the key characteristics of hormonogenic sites. We transferred the reaction sites from TG to an engineered tyrosine donor-acceptor pair in the unrelated bacterial maltose-binding protein (MBP), which yielded hormone production with an efficiency comparable to that of TG. Our study provides a framework to further understand the production and regulation of thyroid hormones.


Asunto(s)
Microscopía por Crioelectrón , Tiroglobulina/química , Tiroglobulina/ultraestructura , Proteínas Bacterianas/química , Células HEK293 , Humanos , Proteínas de Unión a Maltosa/química , Modelos Moleculares , Mutación , Reproducibilidad de los Resultados , Solventes/química , Tiroglobulina/genética , Hormonas Tiroideas/biosíntesis , Hormonas Tiroideas/metabolismo , Tirosina/química , Tirosina/genética , Tirosina/metabolismo
11.
J Proteome Res ; 19(1): 327-336, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31746214

RESUMEN

The field of structural biology is increasingly focusing on studying proteins in situ, i.e., in their greater biological context. Cross-linking mass spectrometry (CLMS) is contributing to this effort, typically through the use of mass spectrometry (MS)-cleavable cross-linkers. Here, we apply the popular noncleavable cross-linker disuccinimidyl suberate (DSS) to human mitochondria and identify 5518 distance restraints between protein residues. Each distance restraint on proteins or their interactions provides structural information within mitochondria. Comparing these restraints to protein data bank (PDB)-deposited structures and comparative models reveals novel protein conformations. Our data suggest, among others, substrates and protein flexibility of mitochondrial heat shock proteins. Through this study, we bring forward two central points for the progression of CLMS towards large-scale in situ structural biology: First, clustered conflicts of cross-link data reveal in situ protein conformation states in contrast to error-rich individual conflicts. Second, noncleavable cross-linkers are compatible with proteome-wide studies.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Espectrometría de Masas/métodos , Mitocondrias/química , Proteínas Mitocondriales/química , Cromatografía en Gel , Humanos , Células K562 , Proteínas Mitocondriales/análisis , Conformación Proteica , Mapas de Interacción de Proteínas , Succinimidas/química , Flujo de Trabajo
12.
Nat Struct Mol Biol ; 26(3): 227-236, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30833788

RESUMEN

Structural maintenance of chromosomes (SMC)-kleisin complexes organize chromosomal DNAs in all domains of life, with key roles in chromosome segregation, DNA repair and regulation of gene expression. They function through the entrapment and active translocation of DNA, but the underlying conformational changes are largely unclear. Using structural biology, mass spectrometry and cross-linking, we investigated the architecture of two evolutionarily distant SMC-kleisin complexes: MukBEF from Escherichia coli, and cohesin from Saccharomyces cerevisiae. We show that both contain a dynamic coiled-coil discontinuity, the elbow, near the middle of their arms that permits a folded conformation. Bending at the elbow brings into proximity the hinge dimerization domain and the head-kleisin module, situated at opposite ends of the arms. Our findings favour SMC activity models that include a large conformational change in the arms, such as a relative movement between DNA contact sites during DNA loading and translocation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Escherichia coli/metabolismo , Pliegue de Proteína , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Escherichia coli , Conformación Proteica , Saccharomyces cerevisiae , Cohesinas
13.
Anal Chem ; 91(4): 2678-2685, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30649854

RESUMEN

Cross-linking mass spectrometry draws structural information from covalently linked peptide pairs. When these links do not match to previous structural models, they may indicate changes in protein conformation. Unfortunately, such links can also be the result of experimental error or artifacts. Here, we describe the observation of noncovalently associated peptides during liquid chromatography-mass spectrometry analysis, which can easily be misidentified as cross-linked. Strikingly, they often mismatch to the protein structure. Noncovalently associated peptides presumably form during ionization and can be distinguished from cross-linked peptides by observing coelution of the corresponding linear peptides in MS1 spectra, as well as the presence of the individual (intact) peptide fragments in MS2 spectra. To suppress noncovalent peptide formations, increasingly disruptive ionization settings can be used, such as in-source fragmentation.


Asunto(s)
Conalbúmina/análisis , Creatina Quinasa/análisis , Mioglobina/análisis , Péptidos/análisis , Albúmina Sérica Humana/análisis , Secuencia de Aminoácidos , Animales , Pollos , Cromatografía Liquida , Conalbúmina/química , Conalbúmina/metabolismo , Creatina Quinasa/química , Creatina Quinasa/metabolismo , Reactivos de Enlaces Cruzados/química , Caballos , Humanos , Espectrometría de Masas , Mioglobina/química , Mioglobina/metabolismo , Péptidos/química , Péptidos/metabolismo , Multimerización de Proteína , Conejos , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo
14.
Biol Chem ; 395(7-8): 871-80, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24713574

RESUMEN

The murine polyomavirus encodes three structural proteins, VP1, VP2 and VP3, which together form the viral capsid. The outer shell of this capsid is composed of the major capsid protein VP1, the inner shell consists of VP2 and its N-terminally truncated form VP3. These two minor capsid proteins interact with their identical C-terminal part in the central cavity of VP1 pentamers, building the capsid assembly unit. While the VP1 structure and functions are well studied, VP2 and VP3 are poorly understood. In order to get a detailed insight into the structure and function of the minor capsid proteins, they were produced recombinantly in Escherichia coli as inclusion bodies and refolded in vitro. The success of refolding was strictly dependent on the presence of detergent in the refolding buffer. VP2 and VP3 are monomeric and their structures exhibit a high α-helical content. The function of both proteins could be monitored by complex formation with VP1. Furthermore, we could demonstrate a hemolytic activity of VP2/VP3 in vitro, which fits well into a postulated membrane interaction of VP2 during viral infection.


Asunto(s)
Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Poliomavirus/química , Poliomavirus/metabolismo , Replegamiento Proteico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...