Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 24(43): 435401, 2012 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-23032302

RESUMEN

Charge transfer in cobalt oxide Co(3)O(4) in the spinel structure is evidenced by experimental results using x-ray diffraction (XRD), x-ray absorption near edge structure (XANES) spectroscopy, and Raman scattering at high pressures up to 42.1, 24.6 and 35.1 GPa, respectively. While the cubic structure was found to persist under pressure up to 42.1 GPa based on the XRD and Raman results, the mode Grüneisen parameter was calculated according to our Raman measurements. Our structural data refinement revealed a structural transition from the normal spinel structure at low pressures to a partially inverse spinel structure at pressures above 17.7 GPa. This transition may be caused by the interaction of charges between tetrahedral and octahedral sites via a charge transfer process. Evidence for the charge transfer process is further supported by changes of the pre-edge features in the XANES data.

2.
Phys Rev Lett ; 104(10): 105702, 2010 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-20366436

RESUMEN

Using high-pressure synchrotron x-ray absorption spectroscopy, we observed the Ce 4f electron in Ce(75)Al(25) metallic glass transform from its ambient localized state to an itinerant state above 5 GPa. A parallel x-ray diffraction study revealed a volume collapse of about 8.6%, coinciding with 4f delocalization. The transition started from a low-density state below 1.5 GPa, went through continuous densification ending with a high-density state above 5 GPa. This new type of electronic polyamorphism in densely packed metallic glass is dictated by the Ce constituent, and is fundamentally distinct from the well-established structural polyamorphism in which densification is caused by coordination change and atomic rearrangement.

3.
Proc Natl Acad Sci U S A ; 106(8): 2515-8, 2009 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-19188608

RESUMEN

The formation of substitutional alloys has been restricted to elements with similar atomic radii and electronegativity. Using high-pressure at 298 K, we synthesized a face-centered cubic disordered alloy of highly dissimilar elements (large Ce and small Al atoms) by compressing the Ce(3)Al intermetallic compound >15 GPa or the Ce(3)Al metallic glass >25 GPa. Synchrotron X-ray diffraction, Ce L(3)-edge absorption spectroscopy, and ab initio calculations revealed that the pressure-induced Kondo volume collapse and 4f electron delocalization of Ce reduced the differences between Ce and Al and brought them within the Hume-Rothery (HR) limit for substitutional alloying. The alloy remained after complete release of pressure, which was also accompanied by the transformation of Ce back to its ambient 4f electron localized state and reversal of the Kondo volume collapse, resulting in a non-HR alloy at ambient conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...