Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 626(7999): 517-522, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38356066

RESUMEN

Lifted Kramers spin degeneracy (LKSD) has been among the central topics of condensed-matter physics since the dawn of the band theory of solids1,2. It underpins established practical applications as well as current frontier research, ranging from magnetic-memory technology3-7 to topological quantum matter8-14. Traditionally, LKSD has been considered to originate from two possible internal symmetry-breaking mechanisms. The first refers to time-reversal symmetry breaking by magnetization of ferromagnets and tends to be strong because of the non-relativistic exchange origin15. The second applies to crystals with broken inversion symmetry and tends to be comparatively weaker, as it originates from the relativistic spin-orbit coupling (SOC)16-19. A recent theory work based on spin-symmetry classification has identified an unconventional magnetic phase, dubbed altermagnetic20,21, that allows for LKSD without net magnetization and inversion-symmetry breaking. Here we provide the confirmation using photoemission spectroscopy and ab initio calculations. We identify two distinct unconventional mechanisms of LKSD generated by the altermagnetic phase of centrosymmetric MnTe with vanishing net magnetization20-23. Our observation of the altermagnetic LKSD can have broad consequences in magnetism. It motivates exploration and exploitation of the unconventional nature of this magnetic phase in an extended family of materials, ranging from insulators and semiconductors to metals and superconductors20,21, that have been either identified recently or perceived for many decades as conventional antiferromagnets21,24,25.

2.
Nat Commun ; 14(1): 1818, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002246

RESUMEN

Antiferromagnetic materials have been proposed as new types of narrowband THz spintronic devices owing to their ultrafast spin dynamics. Manipulating coherently their spin dynamics, however, remains a key challenge that is envisioned to be accomplished by spin-orbit torques or direct optical excitations. Here, we demonstrate the combined generation of broadband THz (incoherent) magnons and narrowband (coherent) magnons at 1 THz in low damping thin films of NiO/Pt. We evidence, experimentally and through modeling, two excitation processes of spin dynamics in NiO: an off-resonant instantaneous optical spin torque in (111) oriented films and a strain-wave-induced THz torque induced by ultrafast Pt excitation in (001) oriented films. Both phenomena lead to the emission of a THz signal through the inverse spin Hall effect in the adjacent heavy metal layer. We unravel the characteristic timescales of the two excitation processes found to be < 50 fs and > 300 fs, respectively, and thus open new routes towards the development of fast opto-spintronic devices based on antiferromagnetic materials.

3.
Phys Rev Lett ; 130(3): 036702, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36763381

RESUMEN

The anomalous Hall effect, commonly observed in metallic magnets, has been established to originate from the time-reversal symmetry breaking by an internal macroscopic magnetization in ferromagnets or by a noncollinear magnetic order. Here we observe a spontaneous anomalous Hall signal in the absence of an external magnetic field in an epitaxial film of MnTe, which is a semiconductor with a collinear antiparallel magnetic ordering of Mn moments and a vanishing net magnetization. The anomalous Hall effect arises from an unconventional phase with strong time-reversal symmetry breaking and alternating spin polarization in real-space crystal structure and momentum-space electronic structure. The anisotropic crystal environment of magnetic Mn atoms due to the nonmagnetic Te atoms is essential for establishing the unconventional phase and generating the anomalous Hall effect.

4.
Nat Commun ; 13(1): 6140, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253357

RESUMEN

In antiferromagnets, the efficient transport of spin-waves has until now only been observed in the insulating antiferromagnet hematite, where circularly (or a superposition of pairs of linearly) polarized spin-waves diffuse over long distances. Here, we report long-distance spin-transport in the antiferromagnetic orthoferrite YFeO3, where a different transport mechanism is enabled by the combined presence of the Dzyaloshinskii-Moriya interaction and externally applied fields. The magnon decay length is shown to exceed hundreds of nanometers, in line with resonance measurements that highlight the low magnetic damping. We observe a strong anisotropy in the magnon decay lengths that we can attribute to the role of the magnon group velocity in the transport of spin-waves in antiferromagnets. This unique mode of transport identified in YFeO3 opens up the possibility of a large and technologically relevant class of materials, i.e., canted antiferromagnets, for long-distance spin transport.

5.
J Phys Condens Matter ; 34(42)2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35940170

RESUMEN

Using momentum microscopy with sub-µm spatial resolution, allowing momentum resolved photoemission on individual antiferromagnetic domains, we observe an asymmetry in the electronic band structure,E(k)≠E(-k), in Mn2Au. This broken band structure parity originates from the combined time and parity symmetry,PT, of the antiferromagnetic order of the Mn moments, in connection with spin-orbit coupling. The spin-orbit interaction couples the broken parity to the Néel order parameter direction. We demonstrate a novel tool to image the Néel vector direction,N, by combining spatially resolved momentum microscopy withab-initiocalculations that correlate the broken parity with the vectorN.

6.
Nat Commun ; 12(1): 6539, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34764314

RESUMEN

In antiferromagnetic spintronics, the read-out of the staggered magnetization or Néel vector is the key obstacle to harnessing the ultra-fast dynamics and stability of antiferromagnets for novel devices. Here, we demonstrate strong exchange coupling of Mn2Au, a unique metallic antiferromagnet that exhibits Néel spin-orbit torques, with thin ferromagnetic Permalloy layers. This allows us to benefit from the well-established read-out methods of ferromagnets, while the essential advantages of antiferromagnetic spintronics are only slightly diminished. We show one-to-one imprinting of the antiferromagnetic on the ferromagnetic domain pattern. Conversely, alignment of the Permalloy magnetization reorients the Mn2Au Néel vector, an effect, which can be restricted to large magnetic fields by tuning the ferromagnetic layer thickness. To understand the origin of the strong coupling, we carry out high resolution electron microscopy imaging and we find that our growth yields an interface with a well-defined morphology that leads to the strong exchange coupling.

7.
Nat Commun ; 11(1): 6332, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303758

RESUMEN

Antiferromagnetic materials can host spin-waves with polarizations ranging from circular to linear depending on their magnetic anisotropies. Until now, only easy-axis anisotropy antiferromagnets with circularly polarized spin-waves were reported to carry spin-information over long distances of micrometers. In this article, we report long-distance spin-transport in the easy-plane canted antiferromagnetic phase of hematite and at room temperature, where the linearly polarized magnons are not intuitively expected to carry spin. We demonstrate that the spin-transport signal decreases continuously through the easy-axis to easy-plane Morin transition, and persists in the easy-plane phase through current induced pairs of linearly polarized magnons with dephasing lengths in the micrometer range. We explain the long transport distance as a result of the low magnetic damping, which we measure to be ≤ 10-5 as in the best ferromagnets. All of this together demonstrates that long-distance transport can be achieved across a range of anisotropies and temperatures, up to room temperature, highlighting the promising potential of this insulating antiferromagnet for magnon-based devices.

8.
ACS Nano ; 14(12): 17554-17564, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33236903

RESUMEN

The coupling of real and momentum space is utilized to tailor electronic properties of the collinear metallic antiferromagnet Mn2Au by aligning the real space Néel vector indicating the direction of the staggered magnetization. Pulsed magnetic fields of 60 T were used to orient the sublattice magnetizations of capped epitaxial Mn2Au(001) thin films perpendicular to the applied field direction by a spin-flop transition. The electronic structure and its corresponding changes were investigated by angular-resolved photoemission spectroscopy with photon energies in the vacuum-ultraviolet, soft, and hard X-ray range. The results reveal an energetic rearrangement of conduction electrons propagating perpendicular to the Néel vector. They confirm previous predictions on the origin of the Néel spin-orbit torque and anisotropic magnetoresistance in Mn2Au and reflect the combined antiferromagnetic and spin-orbit interaction in this compound leading to inversion symmetry breaking.

9.
Phys Rev Lett ; 125(7): 077201, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32857543

RESUMEN

We achieve current-induced switching in collinear insulating antiferromagnetic CoO/Pt, with fourfold in-plane magnetic anisotropy. This is measured electrically by spin Hall magnetoresistance and confirmed by the magnetic field-induced spin-flop transition of the CoO layer. By applying current pulses and magnetic fields, we quantify the efficiency of the acting current-induced torques and estimate a current-field equivalence ratio of 4×10^{-11} T A^{-1} m^{2}. The Néel vector final state (n⊥j) is in line with a thermomagnetoelastic switching mechanism for a negative magnetoelastic constant of the CoO.

10.
Sci Adv ; 6(23): eaaz8809, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32548264

RESUMEN

Electrons, commonly moving along the applied electric field, acquire in certain magnets a dissipationless transverse velocity. This spontaneous Hall effect, found more than a century ago, has been understood in terms of the time-reversal symmetry breaking by the internal spin structure of a ferromagnetic, noncolinear antiferromagnetic, or skyrmionic form. Here, we identify previously overlooked robust Hall effect mechanism arising from collinear antiferromagnetism combined with nonmagnetic atoms at noncentrosymmetric positions. We predict a large magnitude of this crystal Hall effect in a room temperature collinear antiferromagnet RuO2 and catalog, based on symmetry rules, extensive families of material candidates. We show that the crystal Hall effect is accompanied by the possibility to control its sign by the crystal chirality. We illustrate that accounting for the full magnetization density distribution instead of the simplified spin structure sheds new light on symmetry breaking phenomena in magnets and opens an alternative avenue toward low-dissipation nanoelectronics.

12.
Phys Rev Lett ; 123(17): 177201, 2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31702247

RESUMEN

We probe the current-induced magnetic switching of insulating antiferromagnet-heavy-metal systems, by electrical spin Hall magnetoresistance measurements and direct imaging, identifying a reversal occurring by domain wall (DW) motion. We observe switching of more than one-third of the antiferromagnetic domains by the application of current pulses. Our data reveal two different magnetic switching mechanisms leading together to an efficient switching, namely, the spin-current induced effective magnetic anisotropy variation and the action of the spin torque on the DWs.

13.
Phys Rev Lett ; 120(23): 237201, 2018 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-29932703

RESUMEN

We observe the excitation of collective modes in the terahertz (THz) range driven by the recently discovered Néel spin-orbit torques (NSOTs) in the metallic antiferromagnet Mn_{2}Au. Temperature-dependent THz spectroscopy reveals a strong absorption mode centered near 1 THz, which upon heating from 4 to 450 K softens and loses intensity. A comparison with the estimated eigenmode frequencies implies that the observed mode is an in-plane antiferromagnetic resonance (AFMR). The AFMR absorption strength exceeds those found in antiferromagnetic insulators, driven by the magnetic field of the THz radiation, by 3 orders of magnitude. Based on this and the agreement with our theory modeling, we infer that the driving mechanism for the observed mode is the current-induced NSOT. Here the electric field component of the THz pulse drives an ac current in the metal, which subsequently drives the AFMR. This electric manipulation of the Néel order parameter at high frequencies makes Mn_{2}Au a prime candidate for antiferromagnetic ultrafast memory applications.

14.
Nat Commun ; 9(1): 348, 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29367633

RESUMEN

Using antiferromagnets as active elements in spintronics requires the ability to manipulate and read-out the Néel vector orientation. Here we demonstrate for Mn2Au, a good conductor with a high ordering temperature suitable for applications, reproducible switching using current pulse generated bulk spin-orbit torques and read-out by magnetoresistance measurements. Reversible and consistent changes of the longitudinal resistance and planar Hall voltage of star-patterned epitaxial Mn2Au(001) thin films were generated by pulse current densities of ≃107 A/cm2. The symmetry of the torques agrees with theoretical predictions and a large read-out magnetoresistance effect of more than ≃6% is reproduced by ab initio transport calculations.

15.
Phys Rev Lett ; 118(10): 106402, 2017 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-28339249

RESUMEN

Spin orbitronics and Dirac quasiparticles are two fields of condensed matter physics initiated independently about a decade ago. Here we predict that Dirac quasiparticles can be controlled by the spin-orbit torque reorientation of the Néel vector in an antiferromagnet. Using CuMnAs as an example, we formulate symmetry criteria allowing for the coexistence of topological Dirac quasiparticles and Néel spin-orbit torques. We identify the nonsymmorphic crystal symmetry protection of Dirac band crossings whose on and off switching is mediated by the Néel vector reorientation. We predict that this concept verified by minimal model and density functional calculations in the CuMnAs semimetal antiferromagnet can lead to a topological metal-insulator transition driven by the Néel vector and to the topological anisotropic magnetoresistance.

16.
Phys Rev Lett ; 117(1): 017202, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27419586

RESUMEN

We demonstrate the possibility to drive an antiferromagnetic domain wall at high velocities by fieldlike Néel spin-orbit torques. Such torques arise from current-induced local fields that alternate their orientation on each sublattice of the antiferromagnet and whose orientation depends primarily on the current direction, giving them their fieldlike character. The domain wall velocities that can be achieved by this mechanism are 2 orders of magnitude greater than the ones in ferromagnets. This arises from the efficiency of the staggered spin-orbit fields to couple to the order parameter and from the exchange-enhanced phenomena in antiferromagnetic texture dynamics, which leads to a low domain wall effective mass and the absence of a Walker breakdown limit. In addition, because of its nature, the staggered spin-orbit field can lift the degeneracy between two 180° rotated states in a collinear antiferromagnet, and it provides a force that can move such walls and control the switching of the states.

17.
Phys Rev Lett ; 115(3): 036602, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26230813

RESUMEN

We carry out density functional theory calculations which demonstrate that the electron dynamics in the Skyrmion phase of Fe-rich Mn_{1-x}Fe_{x}Ge alloys is governed by Berry phase physics. We observe that the magnitude of the Dzyaloshinskii-Moriya interaction directly related to the mixed space-momentum Berry phases, changes sign and magnitude with concentration x in direct correlation with the data of Shibata et al. [Nat. Nanotechnol. 8, 723 (2013)]. The computed anomalous and topological Hall effects in FeGe are also in good agreement with available experiments. We further develop a simple tight-binding model able to explain these findings. Finally, we show that the adiabatic Berry phase picture is violated in the Mn-rich limit of the alloys.

18.
Nat Mater ; 13(10): 932-7, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25108612

RESUMEN

Controlling spin-related material properties by electronic means is a key step towards future spintronic technologies. The spin Hall effect (SHE) has become increasingly important for generating, detecting and using spin currents, but its strength--quantified in terms of the SHE angle--is ultimately fixed by the magnitude of the spin-orbit coupling (SOC) present for any given material system. However, if the electrons generating the SHE can be controlled by populating different areas (valleys) of the electronic structure with different SOC characteristic the SHE angle can be tuned directly within a single sample. Here we report the manipulation of the SHE in bulk GaAs at room temperature by means of an electrical intervalley transition induced in the conduction band. The spin Hall angle was determined by measuring an electromotive force driven by photoexcited spin-polarized electrons drifting through GaAs Hall bars. By controlling electron populations in different (Γ and L) valleys, we manipulated the angle from 0.0005 to 0.02. This change by a factor of 40 is unprecedented in GaAs and the highest value achieved is comparable to that of the heavy metal Pt.

19.
Phys Rev Lett ; 111(11): 117201, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-24074116

RESUMEN

We present a new tool for imaging spin properties. We show that a spatially averaged spin signal, measured as a function of a scanned magnetic probe's position, contains information about the local spin properties. In this first demonstration we map the injected spin density in GaAs by measuring spin photoluminescence with a resolution of 1.2 µm. The ultimate limit of the technique is set by the gradient of the probe's field, allowing for a resolution beyond the optical diffraction limit. Such probes can also be integrated with other detection methods. This generality allows the technique to be extended to buried interfaces and optically inactive materials.

20.
Phys Rev Lett ; 94(12): 127202, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15903954

RESUMEN

We report a large tunneling anisotropic magnetoresistance (TAMR) in (Ga,Mn)As lateral nanoconstrictions. Unlike previously reported tunneling magnetoresistance effects in nanocontacts, the TAMR does not require noncollinear magnetization on either side of the constriction. The nature of the effect is established by a direct comparison of its phenomenology with that of normal anisotropic magnetoresistance (AMR) measured in the same lateral geometry. The direct link we establish between the TAMR and AMR indicates that TAMR may be observable in other materials showing room temperature AMR and demonstrates that the physics of nanoconstriction magnetoresistive devices can be much richer than previously thought.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...