Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
FASEB J ; 37(2): e22772, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36645117

RESUMEN

Circadian disruption (CD) is the consequence of a mismatch between endogenous circadian rhythms and behavior, and frequently occurs in shift workers. CD has often been linked to impairment of glucose and lipid homeostasis. It is, however, unknown if these effects are sex dependent. Here, we subjected male and female C57BL/6J mice to 6-h light phase advancements every 3 days to induce CD and assessed glucose and lipid homeostasis. Within this model, we studied the involvement of gonadal sex hormones by injecting mice with gonadotropin-releasing hormone-antagonist degarelix. We demonstrate that CD has sex-specific effects on glucose homeostasis, as CD elevated fasting insulin levels in male mice while increasing fasting glucose levels in female mice, which appeared to be independent of behavior, food intake, and energy expenditure. Absence of gonadal sex hormones lowered plasma insulin levels in male mice subjected to CD while it delayed glucose clearance in female mice subjected to CD. CD elevated plasma triglyceride (TG) levels and delayed plasma clearance of TG-rich lipoproteins in both sexes, coinciding with reduced TG-derived FA uptake by adipose tissues. Absence of gonadal sex hormones did not notably alter the effects of CD on lipid metabolism. We conclude that CD causes sex-dependent effects on glucose metabolism, as aggravated by male gonadal sex hormones and partly rescued by female gonadal sex hormones. Future studies on CD should consider the inclusion of both sexes, which may eventually contribute to personalized advice for shift workers.


Asunto(s)
Hormonas Esteroides Gonadales , Insulinas , Ratones , Masculino , Femenino , Animales , Ratones Endogámicos C57BL , Homeostasis , Glucosa/metabolismo , Ritmo Circadiano , Insulinas/farmacología
2.
Front Endocrinol (Lausanne) ; 14: 1292024, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38303978

RESUMEN

Glucocorticoids are key executors of the physiological response to stress. Previous studies in mice showed that the androgen receptor (AR) influenced the transcriptional outcome of glucocorticoid treatment in white and brown adipocytes and in the liver. In the brain, we observed that chronic hypercorticism induced changes in gene expression that tended to be more pronounced in male mice. In the present study, we investigated if glucocorticoid signaling in the brain could be modulated by androgen. After chronic treatment with corticosterone, dihydrotestosterone, a combination of both, and corticosterone in combination with the AR antagonist enzalutamide, we compared the expression of glucocorticoid receptor (NR3C1, also abbreviated GR) target genes in brain regions where AR and GR are co-expressed, namely: prefrontal cortex, hypothalamus, hippocampus, ventral tegmental area and substantia nigra. We observed that androgen affected glucocorticoid signaling only in the prefrontal cortex and the substantia nigra. Dihydrotestosterone and corticosterone independently and inversely regulated expression of Sgk1 and Tsc22d3 in prefrontal cortex. AR antagonism with enzalutamide attenuated corticosterone-induced expression of Fkbp5 in the prefrontal cortex and of Fkbp5 and Sgk1 in the substantia nigra. Additionally, in the substantia nigra, AR antagonism increased expression of Th and Slc18a1, two genes coding for key components of the dopaminergic system. Our data indicate that androgen influence over glucocorticoid stimulation in the brain is not a dominant phenomenon in the context of high corticosterone levels, but can occur in the prefrontal cortex and substantia nigra.


Asunto(s)
Andrógenos , Benzamidas , Glucocorticoides , Nitrilos , Feniltiohidantoína , Masculino , Ratones , Animales , Glucocorticoides/farmacología , Andrógenos/farmacología , Corticosterona , Dihidrotestosterona/farmacología , Mesencéfalo , Corteza Prefrontal
3.
Aging (Albany NY) ; 14(19): 7734-7751, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36202134

RESUMEN

Brown adipose tissue (BAT) contributes to cardiometabolic health by taking up glucose and lipids for oxidation, a process that displays a strong diurnal rhythm. While aging has been shown to reduce thermogenic characteristics of BAT, it is as yet unknown whether this reduction is specific to the time of day. Therefore, we assessed whole-body and BAT energy metabolism in young and middle-aged male and female C57BL/6J mice and studied the consequences for lipid metabolism in humanized APOE*3-Leiden.CETP mice (also on a C57BL/6J background). We demonstrate that in middle-aged versus young mice body temperature is lower in both male and female mice, while uptake of triglyceride (TG)-derived fatty acids (FAs) by BAT, reflecting metabolic activity, is attenuated at its peak at the onset of the dark (wakeful) phase in female mice. This coincided with delayed plasma clearance of TG-rich lipoproteins and TG-depleted lipoprotein core remnants, and elevated plasma TGs at the same time point. Furthermore, middle-aged female mice showed increased adiposity, accompanied by lipid accumulation, increased expression of genes involved in lipogenesis, and reduced expression of genes involved in fat oxidation and the intracellular clock machinery in BAT. Peak abundance of lipoprotein lipase (LPL), a crucial regulator of FA uptake, was attenuated in BAT. Our findings suggest that LPL is a potential therapeutic target for restoring diurnal metabolic BAT activity, and that efficiency of strategies targeting BAT may be improved by including time of day as an important factor.


Asunto(s)
Tejido Adiposo Pardo , Lipoproteína Lipasa , Masculino , Femenino , Ratones , Animales , Tejido Adiposo Pardo/metabolismo , Lipoproteína Lipasa/metabolismo , Ratones Endogámicos C57BL , Triglicéridos/metabolismo , Metabolismo de los Lípidos , Ácidos Grasos/metabolismo , Glucosa/metabolismo , Envejecimiento , Apolipoproteínas E/metabolismo , Tejido Adiposo/metabolismo
4.
J Neuroendocrinol ; 34(4): e13125, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35365898

RESUMEN

Excess glucocorticoid exposure affects emotional and cognitive brain functions. The extreme form, Cushing's syndrome, is adequately modelled in the AdKO2.0 mouse, consequential to adrenocortical hypertrophy and hypercorticosteronemia. We previously reported that the AdKO2.0 mouse brain undergoes volumetric changes that resemble closely those of Cushing's syndrome human patients, as well as changes in expression of glial related marker proteins. In the present work, the expression of genes related to glial and neuronal cell populations and functions was assessed in regions of the anterior brain, hippocampus, amygdala and hypothalamus. Glucocorticoid target genes were consistently regulated, including CRH mRNA suppression in the hypothalamus and induction in amygdala and hippocampus, even if glucocorticoid receptor protein was downregulated. Expression of glial genes was also affected in the AdKO2.0 mouse brain, indicating a different activation status in glial cells. Generic markers for neuronal cell populations, and cellular integrity were only slightly affected. Our findings highlight the vulnerability of glial cell populations to chronic high levels of circulating glucocorticoids.


Asunto(s)
Síndrome de Cushing , Animales , Encéfalo/metabolismo , Síndrome de Cushing/genética , Síndrome de Cushing/metabolismo , Expresión Génica , Glucocorticoides/metabolismo , Humanos , Ratones , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
5.
Mol Metab ; 60: 101497, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35413480

RESUMEN

OBJECTIVE: Brown adipose tissue (BAT) burns fatty acids (FAs) to produce heat, and shows diurnal oscillation in glucose and triglyceride (TG)-derived FA-uptake, peaking around wakening. Here we aimed to gain insight in the diurnal regulation of metabolic BAT activity. METHODS: RNA-sequencing, chromatin immunoprecipitation (ChIP)-sequencing, and lipidomics analyses were performed on BAT samples of wild type C57BL/6J mice collected at 3-hour intervals throughout the day. Knockout and overexpression models were used to study causal relationships in diurnal lipid handling by BAT. RESULTS: We identified pronounced enrichment of oscillating genes involved in extracellular lipolysis in BAT, accompanied by oscillations of FA and monoacylglycerol content. This coincided with peak lipoprotein lipase (Lpl) expression, and was predicted to be driven by peroxisome proliferator-activated receptor gamma (PPARγ) activity. ChIP-sequencing for PPARγ confirmed oscillation in binding of PPARγ to Lpl. Of the known LPL-modulators, angiopoietin-like 4 (Angptl4) showed the largest diurnal amplitude opposite to Lpl, and both Angptl4 knockout and overexpression attenuated oscillations of LPL activity and TG-derived FA-uptake by BAT. CONCLUSIONS: Our findings highlight involvement of PPARγ and a crucial role of ANGPTL4 in mediating the diurnal oscillation of TG-derived FA-uptake by BAT, and imply that time of day is essential when targeting LPL activity in BAT to improve metabolic health.


Asunto(s)
Tejido Adiposo Pardo , Proteína 4 Similar a la Angiopoyetina/metabolismo , Lipoproteína Lipasa , Tejido Adiposo Pardo/metabolismo , Angiopoyetinas , Animales , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , PPAR gamma/metabolismo , Triglicéridos/metabolismo
6.
Am J Physiol Endocrinol Metab ; 322(3): E319-E329, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35156394

RESUMEN

DNA damage responses compete for cellular resources with metabolic pathways, but little is known about the metabolic consequences of impaired DNA replication, a process called replication stress. Here we characterized the metabolic consequences of DNA replication stress at endogenous DNA lesions by using mice with a disruption of Rev1, a translesion DNA polymerase specialized in the mutagenic replication of damaged DNA. Male and female Rev1 knockout (KO) mice were compared with wild-type (WT) mice and followed over time to study the natural course of body weight gain and glucose tolerance. Follow-up measurements were performed in female mice for in-depth metabolic characterization. Body weight and fat mass were only increased in female KO mice versus WT mice, whereas glucose intolerance and a reduction in lean mass were observed in both sexes. Female KO mice showed reduced locomotor activity while male KO mice showed increased activity as compared with their WT littermates. Further characterization of female mice revealed that lipid handling was unaffected by Rev1 deletion. An increased respiratory exchange ratio, combined with elevated plasma lactate levels and increased hepatic gluconeogenesis indicated problems with aerobic oxidation and increased reliance on anaerobic glycolysis. Supplementation with the NAD+ precursor nicotinamide riboside to stimulate aerobic respiration failed to restore the metabolic phenotype. In conclusion, replication stress at endogenous DNA lesions induces a complex metabolic phenotype, most likely initiated by muscular metabolic dysfunction and increased dependence on anaerobic glycolysis. Nicotinamide riboside supplementation after the onset of the metabolic impairment did not rescue this phenotype.NEW & NOTEWORTHY An increasing number of DNA lesions interferes with cellular replication leading to metabolic inflexibility. We utilized Rev1 knockout mice as a model for replication stress, and show a sex-dependent metabolic phenotype, with a pronounced reduction of lean mass and glucose tolerance. These data indicate that in obesity, we may end up in an infinite loop where metabolic disturbance promotes the formation of DNA lesions, which in turn interferes with cellular replication causing further metabolic disturbances.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Intolerancia a la Glucosa , Animales , Peso Corporal , ADN , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , Femenino , Glucosa , Intolerancia a la Glucosa/genética , Masculino , Ratones , Ratones Noqueados
7.
J Clin Endocrinol Metab ; 107(2): 512-524, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34546342

RESUMEN

CONTEXT: Central serous chorioretinopathy (CSC) is a severe ocular disease characterized by fluid accumulation under the retina and abnormalities in the underlying vascular layer, the choroid. CSC has a striking prevalence in males of 80% to 90% of total patients. Corticosteroids are the most pronounced extrinsic risk factor for CSC. Choroidal endothelial cells (CECs) are important for the vascular integrity of the choroid, but the effects of corticosteroid effects in these cells are unknown. OBJECTIVE: We aimed to reveal the potential steroidal contribution to CSC. METHOD: We characterized the expression of the glucocorticoid, mineralocorticoid, and androgen receptor in the human choroid using immunohistochemistry. Using RNA-sequencing, we describe the cortisol response in human CECs derived from 5 male and 5 female postmortem donors. RESULTS: The glucocorticoid receptor was highly expressed in the human choroid, whereas no to minimal expression of the mineralocorticoid and androgen receptors was observed. The extensive transcriptional response to cortisol in human primary cultured CECs showed interindividual differences but very few sex differences. Several highly regulated genes such as ZBTB16 (log2 fold change males 7.9; females 6.2) provide strong links to choroidal vascular regulation. CONCLUSIONS: The glucocorticoid receptor predominantly mediates the response to cortisol in human CECs. Interindividual differences are an important determinant regarding the cortisol response in human cultured CECs, whereas intrinsic sex differences appear less pronounced. The marked response of particular target genes in endothelial cells to cortisol, such as ZBTB16, warrants further investigation into their potential role in the pathophysiology of CSC and other vascular conditions.


Asunto(s)
Coriorretinopatía Serosa Central/patología , Coroides/patología , Hidrocortisona/metabolismo , Receptores de Glucocorticoides/metabolismo , Anciano , Anciano de 80 o más Años , Biopsia , Coroides/citología , Células Endoteliales/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Persona de Mediana Edad , Cultivo Primario de Células , Proteína de la Leucemia Promielocítica con Dedos de Zinc/metabolismo , RNA-Seq , Factores Sexuales
8.
Eur J Endocrinol ; 185(4): 539-552, 2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34342596

RESUMEN

OBJECTIVE: Sex steroid hormones like estrogens have a key role in the regulation of energy homeostasis and metabolism. In transwomen, gender-affirming hormone therapy like estradiol (in combination with antiandrogenic compounds) could affect metabolism as well. Given that the underlying pathophysiological mechanisms are not fully understood, this study assessed circulating estradiol-driven microRNAs (miRs) in transwomen and their regulation of genes involved in metabolism in mice. METHODS: Following plasma miR-sequencing (seq) in a transwomen discovery (n = 20) and validation cohort (n = 30), we identified miR-224 and miR-452. Subsequent systemic silencing of these miRs in male C57Bl/6 J mice (n = 10) was followed by RNA-seq-based gene expression analysis of brown and white adipose tissue in conjunction with mechanistic studies in cultured adipocytes. RESULTS: Estradiol in transwomen lowered plasma miR-224 and -452 carried in extracellular vesicles (EVs) while their systemic silencing in mice and cultured adipocytes increased lipogenesis (white adipose) but reduced glucose uptake and mitochondrial respiration (brown adipose). In white and brown adipose tissue, differentially expressed (miR target) genes are associated with lipogenesis (white adipose) and mitochondrial respiration and glucose uptake (brown adipose). CONCLUSION: This study identified an estradiol-drive post-transcriptional network that could potentially offer a mechanistic understanding of metabolism following gender-affirming estradiol therapy.


Asunto(s)
Micropartículas Derivadas de Células/genética , Estradiol/fisiología , MicroARNs/genética , Transexualidad , Adipocitos/efectos de los fármacos , Adipocitos/fisiología , Adipogénesis/efectos de los fármacos , Adipogénesis/genética , Adulto , Animales , Micropartículas Derivadas de Células/efectos de los fármacos , Micropartículas Derivadas de Células/metabolismo , Estudios de Cohortes , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Estradiol/sangre , Estradiol/farmacología , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Terapia de Reemplazo de Hormonas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/metabolismo , Persona de Mediana Edad , Interferencia de ARN/efectos de los fármacos , Personas Transgénero , Transexualidad/genética , Transexualidad/metabolismo , Adulto Joven
9.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(12): 158511, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31465889

RESUMEN

Brown adipose tissue (BAT) is a potential target to treat cardiometabolic disorders because of its capacity to combust glucose and fatty acids for thermoregulation. Its cellular and molecular investigation in humans is hampered by the limited availability of cell material and the heterogeneity of BAT between and within individuals. In this study, monoclonal lines of conditionally immortalized brown preadipocytes (iBPAs) of mouse and human origin were generated. Conditional immortalization was achieved by doxycycline-controlled expression of simian virus 40 large tumor antigen (LT) with a repressor-based Tet-On system. In the presence of doxycycline, both the murine and human cell lines showed long-term proliferation capacity with a population doubling time of ~28 h. After switching off LT expression by doxycycline removal and exposure to adipogenic differentiation medium, cells from both species acquired brown adipocyte properties. This was evidenced by the accumulation of multilocular lipid droplets, the upregulation of brown adipocyte markers including uncoupling protein 1 and an increase in lipolysis and oxygen consumption following adrenergic stimulation. Switching off LT expression before the onset of adipogenic differentiation was only critical for inducing adipogenesis in the human iBPAs, while their murine counterparts showed adipogenesis upon exposure to the adipogenic differentiation cocktail regardless of LT expression. When switched to proliferation medium, cultures of adipogenically differentiated human iBPAs de-differentiated and resumed cell division without losing their adipogenic capacity. We suggest that iBPAs represent an easy-to-use model for fundamental and applied research into BAT offering unique experimental opportunities due to their capacity to switch between proliferative and differentiated states.


Asunto(s)
Adipocitos Marrones/citología , Adipogénesis , Proliferación Celular , Adipocitos Marrones/metabolismo , Animales , Antígenos Virales de Tumores/genética , Técnicas de Cultivo de Célula , Células Cultivadas , Humanos , Ratones , Ratones Endogámicos C57BL
10.
J Neuroendocrinol ; 31(8): e12735, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31121060

RESUMEN

Brain mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respond to the same glucocorticoid hormones but can have differential effects on cellular function. Several lines of evidence suggest that MR-specific target genes must exist and might underlie the distinct effects of the receptors. The present study aimed to identify MR-specific target genes in the hippocampus, a brain region where MR and GR are co-localised and play a role in the stress response. Using genome-wide binding of both receptor types, we previously identified MR-specific, MR-GR overlapping and GR-specific putative target genes. We now report altered gene expression levels of such genes in the hippocampus of forebrain MR knockout (fbMRKO) mice, killed at the time of their endogenous corticosterone peak. Of those genes associated with MR-specific binding, the most robust effect was a 50% reduction in Jun dimerization protein 2 (Jdp2) mRNA levels in fbMRKO mice. Down-regulation was also observed for the MR-specific Nitric oxide synthase 1 adaptor protein (Nos1ap) and Suv3 like RNA helicase (Supv3 l1). Interestingly, the classical glucocorticoid target gene FK506 binding protein 5 (Fkbp5), which is associated with MR and GR chromatin binding, was expressed at substantially lower levels in fbMRKO mice. Subsequently, hippocampal Jdp2 was confirmed to be up-regulated in a restraint stress model, posing Jdp2 as a bona fide MR target that is also responsive in an acute stress condition. Thus, we show that MR-selective DNA binding can reveal functional regulation of genes and further identify distinct MR-specific effector pathways.


Asunto(s)
Regulación de la Expresión Génica , Hipocampo/metabolismo , Receptores de Mineralocorticoides/fisiología , Animales , Sitios de Unión/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/genética
11.
Int J Mol Sci ; 20(7)2019 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-30934833

RESUMEN

Mineralocorticoid receptor (MR)-mediated signaling in the brain has been suggested as a protective factor in the development of psychopathology, in particular mood disorders. We recently identified genomic loci at which either MR or the closely related glucocorticoid receptor (GR) binds selectively, and found members of the NeuroD transcription factor family to be specifically associated with MR-bound DNA in the rat hippocampus. We show here using forebrain-specific MR knockout mice that GR binding to MR/GR joint target loci is not affected in any major way in the absence of MR. Neurod2 binding was also independent of MR binding. Moreover, functional comparison with MyoD family members indicates that it is the chromatin remodeling aspect of NeuroD, rather than its direct stimulation of transcription, that is responsible for potentiation of MR-mediated transcription. These findings suggest that NeuroD acts in a permissive way to enhance MR-mediated transcription, and they argue against competition for DNA binding as a mechanism of MR- over GR-specific binding.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Receptores de Mineralocorticoides/metabolismo , Transducción de Señal , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Corticosterona/metabolismo , ADN/metabolismo , Células HEK293 , Hipocampo/metabolismo , Humanos , Masculino , Ratones Noqueados , Modelos Biológicos , Proteína MioD/metabolismo , Proteínas del Tejido Nervioso/química , Unión Proteica , Dominios Proteicos , Receptores de Glucocorticoides/metabolismo , Relación Estructura-Actividad
12.
Invest Ophthalmol Vis Sci ; 59(13): 5682-5692, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30489628

RESUMEN

Purpose: To isolate, culture, and characterize primary human choroidal endothelial cells, and to assess their responsiveness to corticosteroids, in order to enable knowledge gain on the pathogenesis of central serous chorioretinopathy. Methods: Choroidal endothelial cells were isolated from cadaveric human donors. Magnetic-activated cell sorting with anti-human CD31 was performed for choroidal endothelial cell isolation. Primary cultures of purified choroidal endothelial cells were treated with several regimens of corticosteroids and analyzed for effects on primary corticosteroid responsive genes. Results: Isolated choroidal endothelial cell cultures had a cobblestone appearance in monolayer cultures and stained positive for vascular endothelial cadherin. Moreover, on a 3D-Matrigel matrix, these cells formed capillary-like structures, characteristic of in vitro endothelial cells. Primary cultures of purified choroidal endothelial cells treated with several regimens of corticosteroids demonstrated significant transcriptional upregulation of primary corticosteroid responsive genes (FKBP5, PER1, GILZ, and SGK1). Further pharmacologic analysis using specific agonists (dexamethasone, aldosterone) and antagonists (mifepristone, spironolactone) for either the glucocorticoid receptor or the mineralocorticoid receptor showed that this response was exclusively mediated by the glucocorticoid receptor in our model. Conclusions: With this optimized choroidal endothelial cell isolation and culturing protocol, we have established an in vitro model that appears very suitable for research on both central serous chorioretinopathy and other diseases in which corticosteroids and choroidal endothelial cells are involved. Our model proves to be suitable for studying effects mediated through the glucocorticoid receptor. The role of mineralocorticoid receptor-mediated effects needs further research, both in vivo and in cell model development.


Asunto(s)
Coriorretinopatía Serosa Central/patología , Coroides/irrigación sanguínea , Células Endoteliales/efectos de los fármacos , Glucocorticoides/farmacología , Modelos Biológicos , Anciano , Anciano de 80 o más Años , Aldosterona/farmacología , Cadherinas/metabolismo , Células Cultivadas , Dexametasona/farmacología , Relación Dosis-Respuesta a Droga , Células Endoteliales/metabolismo , Citometría de Flujo , Regulación de la Expresión Génica/fisiología , Humanos , Proteínas Inmediatas-Precoces/genética , Separación Inmunomagnética , Proteínas Circadianas Period/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Unión a Tacrolimus/genética , Donantes de Tejidos , Factores de Transcripción/genética
13.
Endocrinology ; 159(12): 3925-3936, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30321321

RESUMEN

Medication for nonalcoholic fatty liver disease (NAFLD) is an unmet need. Glucocorticoid (GC) stress hormones drive fat metabolism in the liver, but both full blockade and full stimulation of GC signaling aggravate NAFLD pathology. We investigated the efficacy of selective glucocorticoid receptor (GR) modulator CORT118335, which recapitulates only a subset of GC actions, in reducing liver lipid accumulation in mice. Male C57BL/6J mice received a low-fat diet or high-fat diet mixed with vehicle or CORT118335. Livers were analyzed histologically and for genome-wide mRNA expression. Functionally, hepatic long-chain fatty acid (LCFA) composition was determined by gas chromatography. We determined very-low-density lipoprotein (VLDL) production by treatment with a lipoprotein lipase inhibitor after which blood was collected to isolate radiolabeled VLDL particles and apoB proteins. CORT118335 strongly prevented and reversed hepatic lipid accumulation. Liver transcriptome analysis showed increased expression of GR target genes involved in VLDL production. Accordingly, CORT118335 led to increased lipidation of VLDL particles, mimicking physiological GC action. Independent pathway analysis revealed that CORT118335 lacked induction of GC-responsive genes involved in cholesterol synthesis and LCFA uptake, which was indeed reflected in unaltered hepatic LCFA uptake in vivo. Our data thus reveal that the robust hepatic lipid-lowering effect of CORT118335 is due to a unique combination of GR-dependent stimulation of lipid (VLDL) efflux from the liver, with a lack of stimulation of GR-dependent hepatic fatty acid uptake. Our findings firmly demonstrate the potential use of CORT118335 in the treatment of NAFLD and underscore the potential of selective GR modulation in metabolic disease.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Receptores de Glucocorticoides/antagonistas & inhibidores , Timina/análogos & derivados , Hormona Adrenocorticotrópica/sangre , Animales , Corticosterona/sangre , Glucocorticoides/farmacología , Glucocorticoides/uso terapéutico , Lipogénesis/efectos de los fármacos , Lipoproteínas VLDL/sangre , Hígado/química , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/sangre , Especificidad por Sustrato , Timina/farmacología , Timina/uso terapéutico
14.
Endocrinology ; 159(1): 535-546, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28938459

RESUMEN

Glucocorticoids influence a wide range of metabolic processes in the human body, and excessive glucocorticoid exposure is known to contribute to the development of metabolic disease. We evaluated the utility of the novel glucocorticoid receptor (GR) antagonist CORT125281 for its potential to overcome adiposity, glucose intolerance, and dyslipidemia and compared this head-to-head with the classic GR antagonist RU486 (mifepristone). We show that, although RU486 displays cross-reactivity to the progesterone and androgen receptor, CORT125281 selectively inhibits GR transcriptional activity. In a mouse model for diet-induced obesity, rhythmicity of circulating corticosterone levels was disturbed. CORT125281 restored this disturbed rhythmicity, in contrast to RU486, which further inhibited endogenous corticosterone levels and suppressed adrenal weight. Both CORT125281 and RU486 reduced body weight gain and fat mass. In addition, CORT125281, but not RU486, lowered plasma levels of triglycerides, cholesterol, and free fatty acids and strongly stimulated triglyceride-derived fatty acid uptake by brown adipose tissue depots. In combination with reduced lipid content in brown adipocytes, this indicates that CORT125281 enhances metabolic activity of brown adipose tissue depots. CORT125281 was also found to increase liver lipid accumulation. Taken together, CORT125281 displayed a wide range of beneficial metabolic activities that are in part distinct from RU486, but clinical utility may be limited due to liver lipid accumulation. This warrants further evaluation of GR antagonists or selective modulators that are not accompanied by liver lipid accumulation while preserving their beneficial metabolic activities.


Asunto(s)
Adipocitos Marrones/efectos de los fármacos , Adiposidad/efectos de los fármacos , Fármacos Antiobesidad/uso terapéutico , Antagonistas de Hormonas/uso terapéutico , Metabolismo de los Lípidos/efectos de los fármacos , Obesidad/tratamiento farmacológico , Receptores de Glucocorticoides/antagonistas & inhibidores , Adipocitos Marrones/metabolismo , Adipocitos Marrones/patología , Glándulas Suprarrenales/efectos de los fármacos , Glándulas Suprarrenales/metabolismo , Glándulas Suprarrenales/patología , Animales , Fármacos Antiobesidad/administración & dosificación , Fármacos Antiobesidad/efectos adversos , Fármacos Antiobesidad/farmacología , Células Cultivadas , Corticosterona/sangre , Corticosterona/metabolismo , Relación Dosis-Respuesta a Droga , Células HEK293 , Antagonistas de Hormonas/administración & dosificación , Antagonistas de Hormonas/efectos adversos , Antagonistas de Hormonas/farmacología , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones Endogámicos C57BL , Mifepristona/efectos adversos , Mifepristona/farmacología , Mifepristona/uso terapéutico , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Tamaño de los Órganos/efectos de los fármacos , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Aumento de Peso/efectos de los fármacos
15.
Endocrinology ; 158(5): 1511-1522, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28324065

RESUMEN

In the limbic brain, mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) both function as receptors for the naturally occurring glucocorticoids (corticosterone/cortisol) but mediate distinct effects on cellular physiology via transcriptional mechanisms. The transcriptional basis for specificity of these MR- vs GR-mediated effects is unknown. To address this conundrum, we have identified the extent of MR/GR DNA-binding selectivity in the rat hippocampus using chromatin immunoprecipitation followed by sequencing. We found 918 and 1450 nonoverlapping binding sites for MR and GR, respectively. Furthermore, 475 loci were co-occupied by MR and GR. De novo motif analysis resulted in a similar binding motif for both receptors at 100% of the target loci, which matched the known glucocorticoid response element (GRE). In addition, the Atoh/NeuroD consensus sequence was found in co-occurrence with all MR-specific binding sites but was absent for GR-specific or MR-GR overlapping sites. Basic helix-loop-helix family members Neurod1, Neurod2, and Neurod6 showed hippocampal expression and were hypothesized to bind the Atoh motif. Neurod2 was detected at rat hippocampal MR binding sites but not at GR-exclusive sites. All three NeuroD transcription factors acted as DNA-binding-dependent coactivators for both MR and GR in reporter assays in heterologous HEK293 cells, likely via indirect interactions with the receptors. In conclusion, a NeuroD family member binding to an additional motif near the GRE seems to drive specificity for MR over GR binding at hippocampal binding sites.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Encéfalo/metabolismo , Neuropéptidos/fisiología , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Elementos de Respuesta/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , ADN/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Neuropéptidos/metabolismo , Unión Proteica , Ratas , Ratas Sprague-Dawley
16.
Proc Natl Acad Sci U S A ; 113(10): 2738-43, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26811448

RESUMEN

Steroid receptors are pleiotropic transcription factors that coordinate adaptation to different physiological states. An important target organ is the brain, but even though their effects are well studied in specific regions, brain-wide steroid receptor targets and mediators remain largely unknown due to the complexity of the brain. Here, we tested the idea that novel aspects of steroid action can be identified through spatial correlation of steroid receptors with genome-wide mRNA expression across different regions in the mouse brain. First, we observed significant coexpression of six nuclear receptors (NRs) [androgen receptor (Ar), estrogen receptor alpha (Esr1), estrogen receptor beta (Esr2), glucocorticoid receptor (Gr), mineralocorticoid receptor (Mr), and progesterone receptor (Pgr)] with sets of steroid target genes that were identified in single brain regions. These coexpression relationships were also present in distinct other brain regions, suggestive of as yet unidentified coordinate regulation of brain regions by, for example, glucocorticoids and estrogens. Second, coexpression of a set of 62 known NR coregulators and the six steroid receptors in 12 nonoverlapping mouse brain regions revealed selective downstream pathways, such as Pak6 as a mediator for the effects of Ar and Gr on dopaminergic transmission. Third, Magel2 and Irs4 were identified and validated as strongly responsive targets to the estrogen diethylstilbestrol in the mouse hypothalamus. The brain- and genome-wide correlations of mRNA expression levels of six steroid receptors that we provide constitute a rich resource for further predictions and understanding of brain modulation by steroid hormones.


Asunto(s)
Encéfalo/metabolismo , Perfilación de la Expresión Génica/métodos , Genoma/genética , Receptores de Esteroides/genética , Transducción de Señal/genética , Animales , Receptor alfa de Estrógeno/genética , Hipocampo/metabolismo , Hibridación in Situ , Hibridación Fluorescente in Situ , Masculino , Ratones Endogámicos C57BL , Receptores de Progesterona/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Proc Natl Acad Sci U S A ; 112(21): 6748-53, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-25964318

RESUMEN

Disruption of circadian rhythmicity is associated with obesity and related disorders, including type 2 diabetes and cardiovascular disease. Specifically, prolonged artificial light exposure associates with obesity in humans, although the underlying mechanism is unclear. Here, we report that increasing the daily hours of light exposure increases body adiposity through attenuation of brown adipose tissue (BAT) activity, a major contributor of energy expenditure. Mice exposed to a prolonged day length of 16- and 24-h light, compared with regular 12-h light, showed increased adiposity without affecting food intake or locomotor activity. Mechanistically, we demonstrated that prolonged day length decreases sympathetic input into BAT and reduces ß3-adrenergic intracellular signaling. Concomitantly, prolonging day length decreased the uptake of fatty acids from triglyceride-rich lipoproteins, as well as of glucose from plasma selectively by BAT. We conclude that impaired BAT activity is an important mediator in the association between disturbed circadian rhythm and adiposity, and anticipate that activation of BAT may overcome the adverse metabolic consequences of disturbed circadian rhythmicity.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Pardo/patología , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Obesidad/etiología , Fotoperiodo , Tejido Adiposo Pardo/inervación , Adiposidad/fisiología , Animales , Glucemia/metabolismo , Trastornos Cronobiológicos/complicaciones , Trastornos Cronobiológicos/fisiopatología , Ritmo Circadiano/fisiología , Ingestión de Alimentos , Metabolismo Energético/fisiología , Ácidos Grasos/metabolismo , Lipoproteínas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Obesidad/metabolismo , Obesidad/patología , Receptores Adrenérgicos beta 3/metabolismo , Transducción de Señal , Simpatectomía , Sistema Nervioso Simpático/fisiopatología , Triglicéridos/metabolismo
18.
FASEB J ; 28(12): 5361-75, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25154875

RESUMEN

The endocannabinoid system is an important player in energy metabolism by regulating appetite, lipolysis, and energy expenditure. Chronic blockade of the cannabinoid 1 receptor (CB1R) leads to long-term maintenance of weight loss and reduction of dyslipidemia in experimental and human obesity. The molecular mechanism by which CB1R blockade reverses dyslipidemia in obesity has not yet been clarified. In this study, we showed that CB1R blockade with the systemic CB1R blocker rimonabant enhanced whole-body energy expenditure and activated brown adipose tissue (BAT), indicated by increased expression of genes involved in BAT thermogenesis and decreased lipid droplet size in BAT. This was accompanied by selectively increased triglyceride (TG) uptake by BAT and lower plasma TG levels. Interestingly, the effects on BAT activation were still present at thermoneutrality and could be recapitulated by using the strictly peripheral CB1R antagonist AM6545, indicating direct peripheral activation of BAT. Indeed, CB1R blockade directly activated T37i brown adipocytes, resulting in enhanced uncoupled respiration, most likely via enhancing cAMP/PKA signaling via the adrenergic receptor pathway. Our data indicate that selective targeting of the peripheral CB1R in BAT has therapeutic potential in attenuating dyslipidemia and obesity.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Dislipidemias/prevención & control , Obesidad/prevención & control , Receptor Cannabinoide CB1/antagonistas & inhibidores , Células 3T3-L1 , Absorciometría de Fotón , Animales , Secuencia de Bases , Cartilla de ADN , Ratones , Ratones Transgénicos , Piperidinas/farmacología , Pirazoles/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rimonabant
19.
Thyroid ; 24(1): 78-87, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23819433

RESUMEN

BACKGROUND: Although adenosine monophosphate activated protein kinase (AMPK) plays a crucial role in energy metabolism, a direct effect of AMPK modulation on thyroid function has only recently been reported, and much of its function in the thyroid is currently unknown. The aim of this study was to investigate the mechanism of AMPK modulation in iodide uptake. Furthermore, we wanted to investigate the potential of the AMPK inhibitor compound C as an enhancer of iodide uptake by thyrocytes. METHODS: The in vitro and in vivo effects of AMPK modulation on sodium-iodide symporter (NIS) protein levels and iodide uptake were examined in follicular rat thyroid cell-line cells and C57Bl6/J mice. Activation of AMPK by metformin resulted in a strong reduction of iodide uptake (up to sixfold with 5 mM metformin after 96 h) and NIS protein levels in vitro, whereas AMPK inhibition by compound C not only stimulated iodide uptake but also enhanced NIS protein levels both in vitro (up to sevenfold with 1 µM compound C after 96 h) and in vivo (1.5-fold after daily injections with 20 mg/kg for 4 days). We investigated the regulation of NIS expression by AMPK using a range of promoter constructs consisting of either the NIS promoter or isolated CRE (cAMP response element) and NF-κB elements, which are present within the NIS promoter. RESULTS: Metformin reduced NIS promoter activity (0.6-fold of control), whereas compound C stimulated its activity (3.4-fold) after 4 days. This largely coincides with CRE activation (0.6- and 3.0-fold). These experiments show that AMPK exerts its effects on iodide uptake, at least partly, through the CRE element in the NIS promoter. Furthermore, we have used AMPK-alpha1 knockout mice to determine the long-term effects of AMPK inhibition without chemical compounds. These mice have a less active thyroid, as shown by reduced colloid volume and reduced responsiveness to thyrotropin. CONCLUSION: NIS expression and iodine uptake in thyrocytes can be modulated by metformin and compound C. These compounds exert their effect by modulation of AMPK, which, in turn, regulates the activation of the CRE element in the NIS promoter. Overall, this suggests that the use of AMPK modulating compounds may be useful for the enhancement of iodide uptake by thyrocytes, which could be useful for the treatment of thyroid cancer patients with radioactive iodine.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Yoduros/metabolismo , Metformina/farmacología , Pirazoles/farmacología , Pirimidinas/farmacología , Simportadores/biosíntesis , Glándula Tiroides/metabolismo , Animales , Línea Celular , Modulador del Elemento de Respuesta al AMP Cíclico/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Simportadores/efectos de los fármacos , Glándula Tiroides/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...