Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Chemosphere ; 361: 142492, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38830469

RESUMEN

The Amazon rivers constitute the largest river basin in the world, with a high level of biodiversity. The Tocantins River is one of the most important rivers in this region, which has been impacted by different land uses. The objective of this study was to carry out a multi-evidence analysis focusing on the water quality of the Tocantins River, close to the municipality of Marabá-PA. We analyzed forest cover and water quality and, using the model organism Danio rerio, performed toxicity tests for histopathological effects, as well as the habitat selection approach by exposing fish to different river water samples in a multi-compartment device. The results showed that the studied area has already lost almost 30% of its forests in recent decades. Regarding water quality, the upstream (C1) and downstream (C5) points are the least impacted. On the other hand, the other points (C2-C4), closer to the city, greater input of pollutants was detected. Fish exposed to water samples from the most impacted sites showed several oedemas and hyperplastic cells in the gills. Regarding habitat selection behavior, there was a marked avoidance by samples with the highest contamination load. The results of this study lead to the understanding of the potential negative effects of human activities on local Amazonian biodiversity, since the potential toxicity of the environment, in conjunction with changes in the habitat selection process, could lead to a decline in populations of aquatic organisms, altering the environmental balance.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Ríos , Contaminantes Químicos del Agua , Calidad del Agua , Pez Cebra , Animales , Ríos/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Biodiversidad , Brasil , Bosques , Peces
2.
Fish Physiol Biochem ; 47(3): 737-746, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32556899

RESUMEN

This study interrogated factors which affect the appearance of secondary sexual characteristics, namely, fin spinelets (rigid dimorphic structure empirically associated with male sexual maturity in characids), in Astyanax altiparanae. Many variables such as the season of the year and several biotic components, including organism length, sex, phase of maturation, and the presence of gonads, were investigated. These factors were then associated with the physiological development of fin spinelets. The development of this trait is related to reproductive strategies but demonstrates considerable population variability as it is found throughout the year in some species but only during specific periods in others. Seventy-five specimens obtained from spontaneous spawn of farmed fish were arbitrarily grouped into small-, medium-, and large-sized groups in both summer and winter. Gonadal histology was performed to confirm each animal's sex and phase of maturation. Diaphanization of the fish was performed to visualize, count, and measure the fin spinelets. Finally, gonadectomization of some males was utilized to investigate the gonadal effect on the presence of fin spinelets. The present results show that the presence of fin spinelets is a secondary sexual characteristic of males which occurs independently of the season and is always present in males longer than 48 mm. However, in the summer, male specimens presented more rays with fin spinelets than during the winter. Furthermore, since fin spinelets were observed on immature males as well as spawning capable males, their presence cannot be directly associated with sexual maturity in male A. altiparanae, as previously supposed. Finally, gonadectomization resulted in an initial reduction in the length of fin spinelets. However, this trend was eventually normalized with time.


Asunto(s)
Aletas de Animales/anatomía & histología , Characidae/anatomía & histología , Caracteres Sexuales , Animales , Castración , Femenino , Masculino , Ovario/anatomía & histología , Ovario/cirugía , Estaciones del Año , Testículo/anatomía & histología , Testículo/cirugía
3.
J Fish Biol ; 95(1): 274-286, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30345536

RESUMEN

Chemical communication of predation risk has evolved multiple times in fish species, with conspecific alarm substance (CAS) being the most well understood mechanism. CAS is released after epithelial damage, usually when prey fish are captured by a predator and elicits neurobehavioural adjustments in conspecifics which increase the probability of avoiding predation. As such, CAS is a partial predator stimulus, eliciting risk assessment-like and avoidance behaviours and disrupting the predation sequence. The present paper reviews the distribution and putative composition of CAS in fish and presents a model for the neural processing of these structures by the olfactory and the brain aversive systems. Applications of CAS in the behavioural neurosciences and neuropharmacology are also presented, exploiting the potential of model fish [e.g., zebrafish Danio rerio, guppies Poecilia reticulata, minnows Phoxinus phoxinus) in neurobehavioural research.


Asunto(s)
Comunicación Animal , Reacción de Prevención , Cyprinidae/fisiología , Poecilia/fisiología , Conducta Predatoria , Pez Cebra/fisiología , Animales , Filogenia , Olfato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...