Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 112022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35708309

RESUMEN

Numerous receptor tyrosine kinases and immune receptors activate phospholipase C-γ (PLC-γ) isozymes at membranes to control diverse cellular processes including phagocytosis, migration, proliferation, and differentiation. The molecular details of this process are not well understood. Using hydrogen-deuterium exchange mass spectrometry, we show that PLC-γ1 is relatively inert to lipid vesicles that contain its substrate, phosphatidylinositol 4,5-bisphosphate (PIP2), unless first bound to the kinase domain of the fibroblast growth factor receptor (FGFR1). Exchange occurs throughout PLC-γ1 and is exaggerated in PLC-γ1 containing an oncogenic substitution (D1165H) that allosterically activates the lipase. These data support a model whereby initial complex formation shifts the conformational equilibrium of PLC-γ1 to favor activation. This receptor-induced priming of PLC-γ1 also explains the capacity of a kinase-inactive fragment of FGFR1 to modestly enhance the lipase activity of PLC-γ1 operating on lipid vesicles but not a soluble analog of PIP2 and highlights potential cooperativity between receptor engagement and membrane proximity. Priming is expected to be greatly enhanced for receptors embedded in membranes and nearly universal for the myriad of receptors and co-receptors that bind the PLC-γ isozymes.


Asunto(s)
Isoenzimas , Fosfolipasas de Tipo C , Regulación Alostérica , Activación Enzimática , Isoenzimas/metabolismo , Lipasa/metabolismo , Lípidos , Fosfolipasa C gamma/metabolismo , Fosforilación , Fosfolipasas de Tipo C/metabolismo
2.
Methods Mol Biol ; 2251: 225-236, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33481244

RESUMEN

Mammalian phospholipase C (PLC) isozymes are major signaling nodes that regulate a wide range of cellular processes. Dysregulation of PLC activity has been associated with a growing list of human diseases such as cancer and Alzheimer's disease. However, methods to directly and continuously monitor PLC activity at membranes with high sensitivity and throughput are still lacking. We have developed XY-69, a fluorogenic PIP2 analog, which can be efficiently hydrolyzed by PLC isozymes either in solution or at membranes. Here, we describe the optimized assay conditions and protocol to measure the activity of PLC-γ1 (D1165H) with XY-69 in lipid vesicles. The described protocol also applies to other PLC isozymes.


Asunto(s)
Pruebas de Enzimas/métodos , Fosfatidilinositol 4,5-Difosfato/análogos & derivados , Fosfolipasas de Tipo C/análisis , Fluoresceína-5-Isotiocianato/química , Hidrólisis , Isoenzimas/análisis , Metabolismo de los Lípidos/fisiología , Lípidos/química , Fosfatidilinositol 4,5-Difosfato/química , Fosfolipasa C gamma/análisis , Fosfolipasa C gamma/metabolismo , Unión Proteica/fisiología , Fosfolipasas de Tipo C/química , Fosfolipasas de Tipo C/metabolismo
3.
Biochemistry ; 59(41): 4029-4038, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33028071

RESUMEN

The two phospholipase C-γ (PLC-γ) isozymes are major signaling hubs and emerging therapeutic targets for various diseases, yet there are no selective inhibitors for these enzymes. We have developed a high-throughput, liposome-based assay that features XY-69, a fluorogenic, membrane-associated reporter for mammalian PLC isozymes. The assay was validated using a pilot screen of the Library of Pharmacologically Active Compounds 1280 (LOPAC1280) in 384-well format; it is highly reproducible and has the potential to capture both orthosteric and allosteric inhibitors. Selected hit compounds were confirmed with secondary assays, and further profiling led to the interesting discovery that adenosine triphosphate potently inhibits the PLC-γ isozymes through noncompetitive inhibition, raising the intriguing possibility of endogenous, nucleotide-dependent regulation of these phospholipases. These results highlight the merit of the assay platform for large scale screening of chemical libraries to identify allosteric modulators of the PLC-γ isozymes as chemical probes and for drug discovery.


Asunto(s)
Membrana Celular/enzimología , Isoenzimas/química , Isoenzimas/metabolismo , Fosfolipasa C gamma/química , Fosfolipasa C gamma/metabolismo , Animales , Humanos , Transducción de Señal/fisiología
4.
Small GTPases ; 11(3): 180-185, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-29185849

RESUMEN

RAS proteins function as molecular switches that regulate cellular growth by cycling between active GTP- and inactive GDP bound states. While RAS activity is modulated by factors (guanine nucleotide exchange and GTPase activating proteins) that control levels of active Ras-GTP, RAS proteins also undergo a number of post-translational modifications that regulate their function. One such modification is ubiquitylation. Monoubiquitylation of KRAS at lysine 147 (mUbRAS) enhances Ras activation and promotes signaling through the RAF and Phosphoinositide 3-Kinase (PI3K) signaling pathways. We have previously shown that mUbRAS leads to activation of RAS through a defect in GTPase activating protein (GAP) mediated downregulation, similar to the action of most oncogenic mutations. Consistent with these findings, we now show that mUbRASimpairsRAS binding to the p120 GAP catalytic domain. Mutations in activated G12V RAS that prevent ubiquitylaton at 147 show a decrease in tumorigenesis, suggesting that in addition to activating KRAS, monoubiquitylation at this site may promote downstream signaling and transformation. To investigate whether mUbRAS alters RAS effector interactions, we chemically ubiquitylated KRAS at residue 147 and characterized binding of mUbRAS to RAS binding domains (RBDs) from three distinct downstream effectors that play key roles in RAS-mediated transformation. Results from these studies show a decrease in binding of mUbRAS (7-10-fold) relative to the CRAF RAS Binding Domain (RBD), the catalytic subunit of Phosphoinositide 3-Kinase catalytic gamma (PI3Kcγ) and RALGDS RBD. Intriguingly, we find that mUbRAS shows greatly enhanced (> 40-fold) binding to the CRAF RBD when bound to GDP. These findings, taken together, suggest that mUbRASmay promoteactivation of RAS through a GAP defect, and facilitate RAF association and MAPK signaling in a nucleotide independent manner.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal , Ubiquitinación
5.
Elife ; 82019 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-31889510

RESUMEN

Direct activation of the human phospholipase C-γ isozymes (PLC-γ1, -γ2) by tyrosine phosphorylation is fundamental to the control of diverse biological processes, including chemotaxis, platelet aggregation, and adaptive immunity. In turn, aberrant activation of PLC-γ1 and PLC-γ2 is implicated in inflammation, autoimmunity, and cancer. Although structures of isolated domains from PLC-γ isozymes are available, these structures are insufficient to define how release of basal autoinhibition is coupled to phosphorylation-dependent enzyme activation. Here, we describe the first high-resolution structure of a full-length PLC-γ isozyme and use it to underpin a detailed model of their membrane-dependent regulation. Notably, an interlinked set of regulatory domains integrates basal autoinhibition, tyrosine kinase engagement, and additional scaffolding functions with the phosphorylation-dependent, allosteric control of phospholipase activation. The model also explains why mutant forms of the PLC-γ isozymes found in several cancers have a wide spectrum of activities, and highlights how these activities are tuned during disease.


Many enzymes are poised to receive signals from the surrounding environment and translate them into responses inside the cell. One such enzyme is phospholipase C-γ1 (PLC-γ1), which controls how cells grow, divide and migrate.When activating signals are absent, PLC-γ1 usually inhibits its own activity, a mechanism called autoinhibition. This prevents the enzyme from binding to its targets, which are fat molecules known as lipids. When activating signals are present, a phosphate group serves as a 'chemical tag' and is added onto PLC-γ1, allowing the enzyme to bind to lipids.Failure in the regulation of PLC-γ1 or other closely related enzymes may lead to conditions such as cancer, arthritis and Alzheimer's disease. However, it remains unclear how autoinhibition suppresses the activity of the enzyme, and how it is stopped by the addition of the phosphate group.Here, Hajicek et al. determine in great detail the three-dimensional structure of the autoinhibited form of the enzyme using a method known as X-ray crystallography. This reveals that PLC-γ1 has two major lobes: one contains the active site that modifies lipids, and the other sits on top of the active site to prevent lipids from reaching it. The findings suggest that when the phosphate group attaches to PLC-γ1, it triggers a large shape change that shifts the second lobe away from the active site to allow lipids to bind.The three-dimensional structure also helps to understand how mutations identified in certain cancers may activate PLC-γ1. In particular, these mutations disrupt the interactions between elements that usually hold the two lobes together, causing the enzyme to activate more easily.The work by Hajicek et al. provides a framework to understand how cells control PLC-γ1. It is a first step toward designing new drugs that alter the activity of this enzyme, which may ultimately be useful to treat cancer and other diseases.


Asunto(s)
Activación Enzimática/genética , Isoenzimas/ultraestructura , Fosfolipasa C gamma/ultraestructura , Conformación Proteica , Cristalografía por Rayos X , Humanos , Isoenzimas/química , Isoenzimas/genética , Mutación/genética , Neoplasias/genética , Neoplasias/patología , Fosfolipasa C gamma/química , Fosfolipasa C gamma/genética , Fosforilación/genética , Dominios Proteicos/genética , Tirosina/genética
6.
Sci Rep ; 7: 40674, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28094816

RESUMEN

DNA cytosine methylation and methyl-cytosine binding domain (MBD) containing proteins are found throughout all vertebrate species studied to date. However, both the presence of DNA methylation and pattern of methylation varies among invertebrate species. Invertebrates generally have only a single MBD protein, MBD2/3, that does not always contain appropriate residues for selectively binding methylated DNA. Therefore, we sought to determine whether sponges, one of the most ancient extant metazoan lineages, possess an MBD2/3 capable of recognizing methylated DNA and recruiting the associated nucleosome remodeling and deacetylase (NuRD) complex. We find that Ephydatia muelleri has genes for each of the NuRD core components including an EmMBD2/3 that selectively binds methylated DNA. NMR analyses reveal a remarkably conserved binding mode, showing almost identical chemical shift changes between binding to methylated and unmethylated CpG dinucleotides. In addition, we find that EmMBD2/3 and EmGATAD2A/B proteins form a coiled-coil interaction known to be critical for the formation of NuRD. Finally, we show that knockdown of EmMBD2/3 expression disrupts normal cellular architecture and development of E. muelleri. These data support a model in which the MBD2/3 methylation-dependent functional role emerged with the earliest multicellular organisms and has been maintained to varying degrees across animal evolution.


Asunto(s)
Ensamble y Desensamble de Cromatina , Metilación de ADN , Poríferos/genética , Secuencia de Aminoácidos , Animales , ADN/química , ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Fenotipo , Poríferos/metabolismo , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...