Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Comput Assist Radiol Surg ; 17(6): 1091-1099, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35430716

RESUMEN

PURPOSE: Chest X-ray is one of the most widespread examinations of the human body. In interventional radiology, its use is frequently associated with the need to visualize various tube-like objects, such as puncture needles, guiding sheaths, wires, and catheters. Detection and precise localization of these tube-like objects in the X-ray images are, therefore, of utmost value, catalyzing the development of accurate target-specific segmentation algorithms. Similar to the other medical imaging tasks, the manual pixel-wise annotation of the tubes is a resource-consuming process. METHODS: In this work, we aim to alleviate the lack of annotated images by using artificial data. Specifically, we present an approach for synthetic generation of the tube-shaped objects, with a generative adversarial network being regularized with a prior-shape constraint. Namely, our model uses Frangi-based regularization to draw synthetic tubes in the predefined fake mask regions and, then, uses the adversarial component to preserve the global realistic appearance of the synthesized image. RESULTS: Our method eliminates the need for the paired image-mask data and requires only a weakly labeled dataset, with fine-tuning on a small paired sample (10-20 images) proving sufficient to reach the accuracy of the fully supervised models. CONCLUSION: We report the applicability of the approach for the task of segmenting tubes and catheters in the X-ray images, whereas the results should also hold for the other acquisition modalities and image computing applications that contain tubular objects.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Radiografía
2.
IEEE J Biomed Health Inform ; 25(5): 1660-1672, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32956067

RESUMEN

Pneumothorax is potentially a life-threatening disease that requires urgent diagnosis and treatment. The chest X-ray is the diagnostic modality of choice when pneumothorax is suspected. The computer-aided diagnosis of pneumothorax has received a dramatic boost in the last few years due to deep learning advances and the first public pneumothorax diagnosis competition with 15257 chest X-rays manually annotated by a team of 19 radiologists. This paper describes one of the top frameworks that participated in the competition. The framework investigates the benefits of combining the Unet convolutional neural network with various backbones, namely ResNet34, SE-ResNext50, SE-ResNext101, and DenseNet121. The paper presents a step-by-step instruction for the framework application, including data augmentation, and different pre- and post-processing steps. The performance of the framework was of 0.8574 measured in terms of the Dice coefficient. The second contribution of the paper is the comparison of the deep learning framework against three experienced radiologists on the pneumothorax detection and segmentation on challenging X-rays. We also evaluated how diagnostic confidence of radiologists affects the accuracy of the diagnosis and observed that the deep learning framework and radiologists find the same X-rays to be easy/difficult to analyze (p-value <1e4). Finally, the methodology of all top-performing teams from the competition leaderboard was analyzed to find the consistent methodological patterns of accurate pneumothorax detection and segmentation.


Asunto(s)
Aprendizaje Profundo , Neumotórax , Diagnóstico por Computador , Humanos , Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Neumotórax/diagnóstico por imagen , Radiólogos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA