Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 377(1865): 20210256, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36252209

RESUMEN

Implantation of the conceptus into the uterus is absolutely essential for successful embryo development. In humans, our understanding of this process has remained rudimentary owing to the inaccessibility of early implantation stages. Non-human primates recapitulate many aspects of human embryo development and provide crucial insights into trophoblast development, uterine receptivity and embryo invasion. Moreover, primate species exhibit a variety of implantation strategies and differ in embryo invasion depths. This review examines conservation and divergence of the key processes required for embryo implantation in different primates and in comparison with the canonical rodent model. We discuss trophectoderm compartmentalization, endometrial remodelling and embryo adhesion and invasion. Finally, we propose that studying the mechanism controlling invasion depth between different primate species may provide new insights and treatment strategies for placentation disorders in humans. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.


Asunto(s)
Implantación del Embrión , Primates , Animales , Femenino , Embarazo , Endometrio/embriología , Primates/embriología , Trofoblastos , Útero , Humanos
2.
Development ; 149(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35792865

RESUMEN

The trophoblast lineage safeguards fetal development by mediating embryo implantation, immune tolerance, nutritional supply and gas exchange. Human trophoblast stem cells (hTSCs) provide a platform to study lineage specification of placental tissues; however, the regulatory network controlling self-renewal remains elusive. Here, we present a single-cell atlas of human trophoblast development from zygote to mid-gestation together with single-cell profiling of hTSCs. We determine the transcriptional networks of trophoblast lineages in vivo and leverage probabilistic modelling to identify a role for MAPK signalling in trophoblast differentiation. Placenta- and blastoid-derived hTSCs consistently map between late trophectoderm and early cytotrophoblast, in contrast to blastoid-trophoblast, which correspond to trophectoderm. We functionally assess the requirement of the predicted cytotrophoblast network in an siRNA-screen and reveal 15 essential regulators for hTSC self-renewal, including MAZ, NFE2L3, TFAP2C, NR2F2 and CTNNB1. Our human trophoblast atlas provides a powerful analytical resource to delineate trophoblast cell fate acquisition, to elucidate transcription factors required for hTSC self-renewal and to gauge the developmental stage of in vitro cultured cells.


Asunto(s)
Placentación , Trofoblastos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Diferenciación Celular/genética , Femenino , Humanos , Placenta , Embarazo , Células Madre
3.
Nature ; 609(7925): 136-143, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35709828

RESUMEN

Gastrulation controls the emergence of cellular diversity and axis patterning in the early embryo. In mammals, this transformation is orchestrated by dynamic signalling centres at the interface of embryonic and extraembryonic tissues1-3. Elucidating the molecular framework of axis formation in vivo is fundamental for our understanding of human development4-6 and to advance stem-cell-based regenerative approaches7. Here we illuminate early gastrulation of marmoset embryos in utero using spatial transcriptomics and stem-cell-based embryo models. Gaussian process regression-based 3D transcriptomes delineate the emergence of the anterior visceral endoderm, which is hallmarked by conserved (HHEX, LEFTY2, LHX1) and primate-specific (POSTN, SDC4, FZD5) factors. WNT signalling spatially coordinates the formation of the primitive streak in the embryonic disc and is counteracted by SFRP1 and SFRP2 to sustain pluripotency in the anterior domain. Amnion specification occurs at the boundaries of the embryonic disc through ID1, ID2 and ID3 in response to BMP signalling, providing a developmental rationale for amnion differentiation of primate pluripotent stem cells (PSCs). Spatial identity mapping demonstrates that primed marmoset PSCs exhibit the highest similarity to the anterior embryonic disc, whereas naive PSCs resemble the preimplantation epiblast. Our 3D transcriptome models reveal the molecular code of lineage specification in the primate embryo and provide an in vivo reference to decipher human development.


Asunto(s)
Callithrix , Gastrulación , Útero , Animales , Callithrix/embriología , Diferenciación Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Endodermo/citología , Endodermo/embriología , Femenino , Perfilación de la Expresión Génica , Estratos Germinativos/citología , Estratos Germinativos/embriología , Humanos , Células Madre Pluripotentes/citología
4.
Stem Cell Reports ; 16(5): 1347-1362, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33979603

RESUMEN

Human periimplantation development requires the transformation of the naive pluripotent epiblast into a polarized epithelium. Lumenogenesis plays a critical role in this process, as the epiblast undergoes rosette formation and lumen expansion to form the amniotic cavity. Here, we present a high-throughput in vitro model for epiblast morphogenesis. We established a microfluidic workflow to encapsulate human pluripotent stem cells (hPSCs) into monodisperse agarose microgels. Strikingly, hPSCs self-organized into polarized epiblast spheroids that could be maintained in self-renewing and differentiating conditions. Encapsulated primed hPSCs required Rho-associated kinase inhibition, in contrast to naive hPSCs. We applied microgel suspension culture to examine the lumen-forming capacity of hPSCs and reveal an increase in lumenogenesis during the naive-to-primed transition. Finally, we demonstrate the feasibility of co-encapsulating cell types across different lineages and species. Our work provides a foundation for stem cell-based embryo models to interrogate the critical components of human epiblast self-organization and morphogenesis.


Asunto(s)
Técnicas de Cultivo de Célula , Células Madre Pluripotentes Inducidas/citología , Microgeles/química , Morfogénesis , Sefarosa/farmacología , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Inmovilizadas/citología , Células Inmovilizadas/efectos de los fármacos , Estratos Germinativos/citología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Morfogénesis/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Esferoides Celulares/citología , Esferoides Celulares/efectos de los fármacos , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...