Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Am Heart J ; 267: 33-43, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37890547

RESUMEN

Survival with operable breast cancer has improved markedly in recent decades, however, treatment-related cardiovascular toxicities threaten to offset these gains. Ovarian function suppression paired with aromatase inhibition, for premenopausal women with hormone receptor (HR)-positive breast cancer, is a newer widely adopted therapy with the potential for significant long-term cardiovascular toxicity. Abrupt estrogen deprivation for non-cancer reasons is associated with accelerated coronary artery disease. Women with breast cancer treated with aromatase inhibition in addition to ovarian function suppression experience a dual hit with regards to estrogen exposure. The CaRdiac Outcomes With Near-complete estrogen deprivation (CROWN) study seeks to understand the early, subclinical natural history of cardiovascular compromise in young women undergoing near-complete estrogen deprivation (NCED) therapy. It is critical to understand the early subclinical development of cardiovascular disease to identify a window for therapeutic intervention before overt cardiovascular events occur. This three-site regional study (Atrium Health Wake Forest, Duke, and Virginia Commonwealth University) uses serial stress cardiac magnetic resonance (CMR) imaging and cardiac computed tomography angiography (CCTA) obtained during the initial two years of NCED therapy to study myocardial prefusion reserve (MPR), large cardiovascular vessel changes, left ventricular function, and other cardiovascular parameters. The CROWN cohort will consist of 90 premenopausal women with breast cancer, 67 with HR-positive disease receiving NCED and 23 comparators with HR-negative disease. Participants will undergo three annual CMR scans and 2 CCTA scans during the 2-year study period. After initial activation hurdles, accrual has been brisk, and the study is expected to complete accrual in December 2024. Efforts are in place to encourage participant retention with the study primary outcome, change in MPR between the two groups, to be reported in 2026 to 2027. The results of this study will enable premenopausal women with breast cancer to balance the health burdens of cancer at a young age and treatment-related cardiovascular morbidity. Finally, the tools developed here can be utilized to study cardiovascular risk across a range of cancer types and cancer therapies with the ultimate goals of both developing generalizable risk stratification tools as well as validating interventions which prevent overt cardiovascular compromise.


Asunto(s)
Neoplasias de la Mama , Sistema Cardiovascular , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Aromatasa/uso terapéutico , Estrógenos/uso terapéutico , Corazón
3.
Cancers (Basel) ; 14(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36077791

RESUMEN

The goal of this study is to identify pharmacological inhibitors that target a recently identified novel mediator of breast cancer brain metastasis (BCBM), truncated glioma-associated oncogene homolog 1 (tGLI1). Inhibitors of tGLI1 are not yet available. To identify compounds that selectively kill tGLI1-expressing breast cancer, we screened 1527 compounds using two sets of isogenic breast cancer and brain-tropic breast cancer cell lines engineered to stably express the control, GLI1, or tGLI1 vector, and identified the FDA-approved antifungal ketoconazole (KCZ) to selectively target tGLI1-positive breast cancer cells and breast cancer stem cells, but not tGLI1-negative breast cancer and normal cells. KCZ's effects are dependent on tGLI1. Two experimental mouse metastasis studies have demonstrated that systemic KCZ administration prevented the preferential brain metastasis of tGLI1-positive breast cancer and suppressed the progression of established tGLI1-positive BCBM without liver toxicities. We further developed six KCZ derivatives, two of which (KCZ-5 and KCZ-7) retained tGLI1-selectivity in vitro. KCZ-7 exhibited higher blood-brain barrier penetration than KCZ/KCZ-5 and more effectively reduced the BCBM frequency. In contrast, itraconazole, another FDA-approved antifungal, failed to suppress BCBM. The mechanistic studies suggest that KCZ and KCZ-7 inhibit tGLI1's ability to bind to DNA, activate its target stemness genes Nanog and OCT4, and promote tumor proliferation and angiogenesis. Our study establishes the rationale for using KCZ and KCZ-7 for treating and preventing BCBM and identifies their mechanism of action.

4.
Cancer Lett ; 540: 215726, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35589002

RESUMEN

Mechanisms underlying breast cancer brain metastasis (BCBM) are still unclear. In this study, we observed that extracellular vesicles (EVs) secreted from breast cancer cells with increased expression of tGLI1, a BCBM-promoting transcription factor, strongly activated astrocytes. EV-derived microRNA/miRNA microarray revealed tGLI1-positive breast cancer cells highly secreted miR-1290 and miR-1246 encapsulated in EVs. Genetic knockin/knockout studies established a direct link between tGLI1 and both miRNAs. Datamining and analysis of patient samples revealed that BCBM patients had more circulating EV-miRs-1290/1246 than those without metastasis. Ectopic expression of miR-1290 or miR-1246 strongly activated astrocytes whereas their inhibitors abrogated the effect. Conditioned media from miR-1290- or miR-1246-overexpressing astrocytes promoted mammospheres. Furthermore, miRs-1290/1246 suppressed expression of FOXA2 transcription repressor, leading to CNTF cytokine secretion and subsequent activation of astrocytes. Finally, we conducted a mouse study to demonstrate that astrocytes overexpressing miR-1290, but not miR-1246, enhanced intracranial colonization and growth of breast cancer cells. Collectively, our findings demonstrate, for the first time, that breast cancer EV-derived miR-1290 and miR-1246 activate astrocytes in the brain metastatic microenvironment and that EV-derived miR-1290 promotes progression of brain metastases through the novel EV-miR-1290→FOXA2→CNTF signaling axis.


Asunto(s)
Neoplasias Encefálicas , Neoplasias de la Mama , Factor Neurotrófico Ciliar , Vesículas Extracelulares , Factor Nuclear 3-beta del Hepatocito , MicroARNs , Animales , Astrocitos/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Línea Celular Tumoral , Factor Neurotrófico Ciliar/metabolismo , Vesículas Extracelulares/metabolismo , Femenino , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-beta del Hepatocito/metabolismo , Humanos , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción/metabolismo , Microambiente Tumoral
5.
Cancer Lett ; 531: 124-135, 2022 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-35167936

RESUMEN

Whether tumor suppressor candidate 2 (TUSC2) plays an important role in glioblastoma (GBM) progression is largely unknown. Whether TUSC2 undergoes polyubiquitination is unknown. Herein, we report that TUSC2 protein expression is reduced/lost in GBM compared to normal brain due to protein destabilization; TUSC2 mRNA is equally expressed in both tissues. NEDD4 E3 ubiquitin ligase polyubiquitinates TUSC2 at residue K71, and the TUSC2-K71R mutant is resistant to NEDD4-mediated proteasomal degradation. Analysis of GBM specimens showed NEDD4 protein is highly expressed in GBM and the level is inversely correlated with TUSC2 protein levels. Furthermore, TUSC2 restoration induces apoptosis and inhibits patient-derived glioma stem cells (PD-GSCs) in vitro and in vivo. Conversely, TUSC2-knockout promotes PD-GSCs in vitro and in vivo. RNA-Seq analysis and subsequent validations showed GBM cells with TUSC2-knockout expressed increased Bcl-xL and were more resistant to apoptosis induced by a Bcl-xL-specific BH3 mimetic. A TUSC2-knockout gene signature created from the RNA-seq data predicts poor patient survival. Together, these findings establish that NEDD4-mediated polyubiquitination is a novel mechanism for TUSC2 degradation in GBM and that TUSC2 loss promotes GBM progression in part through Bcl-xL upregulation.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Genes Supresores de Tumor , Glioblastoma/patología , Glioma/genética , Humanos , Proteínas Supresoras de Tumor/genética , Ubiquitinación
8.
Oncogene ; 39(47): 7034-7050, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32989258

RESUMEN

While mechanisms for metastasis were extensively studied in cancer cells from patients with detectable tumors, pathways underlying metastatic dissemination from early lesions before primary tumors appear are poorly understood. Her2 promotes breast cancer early dissemination by suppressing p38, but how Her2 downregulates p38 is unclear. Here, we demonstrate that in early lesion breast cancer models, Her2 inhibits p38 by inducing Skp2 through Akt-mediated phosphorylation, which promotes ubiquitination and proteasomal degradation of Tpl2, a p38 MAP3K. The early disseminating cells are Her2+Skp2highTpl2lowp-p38lowE-cadherinlow in the MMTV-Her2 breast cancer model. In human breast carcinoma, high Skp2 and low Tpl2 expression are associated with the Her2+ status; Tpl2 expression positively correlates with that of activated p38; Skp2 expression negatively correlates with that of Tpl2 and activated p38. Moreover, the Her2-Akt-Skp2-Tpl2-p38 axis plays a key role in the disseminating phenotypes in early lesion breast cancer cells; inhibition of Tpl2 enhances early dissemination in vivo. These findings identify the Her2-Akt-Skp2-Tpl2-p38 cascade as a novel mechanism mediating breast cancer early dissemination and a potential target for novel therapies targeting early metastatic dissemination.


Asunto(s)
Neoplasias de la Mama/patología , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Proteínas Proto-Oncogénicas/metabolismo , Receptor ErbB-2/metabolismo , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Animales , Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Movimiento Celular/genética , Conjuntos de Datos como Asunto , Supervivencia sin Enfermedad , Células Epiteliales , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Glándulas Mamarias Animales/patología , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Transgénicos , Metástasis de la Neoplasia/patología , Cultivo Primario de Células , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
9.
Oncogene ; 39(42): 6589-6605, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32929154

RESUMEN

Triple-negative breast cancer (TNBC) and HER2-positive breast cancer are particularly aggressive and associated with unfavorable prognosis. TNBC lacks effective treatments. HER2-positive tumors have treatment options but often acquire resistance to HER2-targeted therapy after initial response. To address these challenges, we determined whether novel combinations of JAK2-STAT3 and SMO-GLI1/tGLI1 inhibitors synergistically target TNBC and HER2 breast cancer since these two pathways are concurrently activated in both tumor types and enriched in metastatic tumors. Herein, we show that novel combinations of JAK2 inhibitors (ruxolitinib and pacritinib) with SMO inhibitors (vismodegib and sonidegib) synergistically inhibited in vitro growth of TNBC and HER2-positive trastuzumab-resistant BT474-TtzmR cells. Synergy was also observed against breast cancer stem cells. To determine if the combination is efficacious in inhibiting metastasis, we treated mice with intracardially inoculated TNBC cells and found the combination to inhibit lung and liver metastases, and prolong host survival without toxicity. The combination inhibited orthotopic growth, VEGF-A expression, and tumor vasculature of both TNBC and HER2-positive trastuzumab-refractory breast cancer. Lung metastasis of orthotopic BT474-TtzmR xenografts was suppressed by the combination. Together, our results indicated that dual targeting of JAK2 and SMO resulted in synergistic suppression of breast cancer growth and metastasis, thereby supporting future clinical testing.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Janus Quinasa 2/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Receptor Smoothened/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Empalme Alternativo , Anilidas/farmacología , Anilidas/uso terapéutico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Compuestos de Bifenilo/farmacología , Compuestos de Bifenilo/uso terapéutico , Hidrocarburos Aromáticos con Puentes/farmacología , Hidrocarburos Aromáticos con Puentes/uso terapéutico , Línea Celular Tumoral , Resistencia a Antineoplásicos , Sinergismo Farmacológico , Femenino , Humanos , Janus Quinasa 2/metabolismo , Ratones , Metástasis de la Neoplasia/tratamiento farmacológico , Metástasis de la Neoplasia/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Nitrilos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazoles/farmacología , Pirazoles/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Receptor ErbB-2/metabolismo , Factor de Transcripción STAT3/metabolismo , Receptor Smoothened/metabolismo , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína con Dedos de Zinc GLI1/genética , Proteína con Dedos de Zinc GLI1/metabolismo
10.
Oncogene ; 39(1): 64-78, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31462709

RESUMEN

Mechanisms for breast cancer metastasis remain unclear. Whether truncated glioma-associated oncogene homolog 1 (TGLI1), a transcription factor known to promote angiogenesis, migration and invasion, plays any role in metastasis of any tumor type has never been investigated. In this study, results of two mouse models of breast cancer metastasis showed that ectopic expression of TGLI1, but not GLI1, promoted preferential metastasis to the brain. Conversely, selective TGLI1 knockdown using antisense oligonucleotides led to decreased breast cancer brain metastasis (BCBM) in vivo. Immunohistochemical staining showed that TGLI1, but not GLI1, was increased in lymph node metastases compared to matched primary tumors, and that TGLI1 was expressed at higher levels in BCBM specimens compared to primary tumors. TGLI1 activation is associated with a shortened time to develop BCBM and enriched in HER2-enriched and triple-negative breast cancers. Radioresistant BCBM cell lines and specimens expressed higher levels of TGLI1, but not GLI1, than radiosensitive counterparts. Since cancer stem cells (CSCs) are radioresistant and metastasis-initiating cells, we examined TGLI1 for its involvement in breast CSCs and found TGLI1 to transcriptionally activate stemness genes CD44, Nanog, Sox2, and OCT4 leading to CSC renewal, and TGLI1 outcompetes with GLI1 for binding to target promoters. We next examined whether astrocyte-priming underlies TGLI1-mediated brain tropism and found that TGLI1-positive CSCs strongly activated and interacted with astrocytes in vitro and in vivo. These findings demonstrate, for the first time, that TGLI1 mediates breast cancer metastasis to the brain, in part, through promoting metastasis-initiating CSCs and activating astrocytes in BCBM microenvironment.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias de la Mama/genética , Células Madre Neoplásicas/patología , Factores de Transcripción/genética , Proteína con Dedos de Zinc GLI1/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/patología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Neoplasias de la Mama/radioterapia , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Xenoinjertos , Humanos , Receptores de Hialuranos/genética , Metástasis Linfática , Ratones , Proteína Homeótica Nanog/genética , Células Madre Neoplásicas/efectos de la radiación , Factor 3 de Transcripción de Unión a Octámeros/genética , Receptor ErbB-2/genética , Factores de Transcripción SOXB1/genética , Microambiente Tumoral/genética , Proteína con Dedos de Zinc GLI1/genética
11.
Oncogene ; 37(19): 2502-2514, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29449694

RESUMEN

Signal transducer and activator of transcription 3 (STAT3), glioma oncogene homolog 1 (GLI1), and truncated GLI1 (tGLI1) are oncogenic transcription factors playing important roles in breast cancer. tGLI1 is a gain-of-function GLI1 isoform. Whether STAT3 physically and/or functionally interacts with GLI1/tGLI1 has not been explored. To address this knowledge gap, we analyzed 47 node-positive breast cancer specimens using immunohistochemical staining and found that phosphorylated-STAT3 (Y705), GLI1, and tGLI1 are co-overexpressed in the majority of triple-negative breast carcinomas (64%) and HER2-enriched (68%) breast carcinomas, and in lymph node metastases (65%). Using gene set enrichment analysis, we analyzed 710 breast tumors and found that STAT3 activation and GLI1/tGLI1 activation signatures are co-enriched in triple-negative subtypes of breast cancers and HER2-enriched subtypes of breast cancers, but not in luminal subtypes of breast cancers. Patients with high levels of STAT3 and GLI1/tGLI1 co-activation in their breast tumors had worse metastasis-free survival compared to those with low levels. Since these proteins co-overexpress in breast tumors, we examined whether they form complexes and observed that STAT3 interacted with both GLI1 and tGLI1. We further found that the STAT3-GLI1 and STAT3-tGLI1 complexes bind to both consensus GLI1-binding and STAT3-binding sites using chromatin immunoprecipitation (ChIP) assay, and that the co-overexpression markedly activated a promoter controlled by GLI1-binding sites. To identify genes that can be directly co-activated by STAT3 and GLI1/tGLI1, we analyzed three ChIP-seq datasets and identified 34 potential target genes. Following validations using reverse transcription polymerase chain reaction and survival analysis, we identified three genes as novel transcriptional targets of STAT3 and GLI1/tGLI1, R-Ras2, Cep70, and UPF3A. Finally, we observed that co-overexpression of STAT3 with GLI1/tGLI1 promoted the ability of breast cancer cells to form mammospheres and that STAT3 only cooperates with tGLI1 in immortalized mammary epithelial cells. In summary, our study identified novel physical and functional cooperation between two families of oncogenic transcription factors, and the interaction contributes to aggressiveness of breast cancer cells and poor prognosis of triple-negative breast cancers and HER2-enriched breast cancers.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundario , Receptor ErbB-2/metabolismo , Factor de Transcripción STAT3/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo , Animales , Neoplasias Encefálicas/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Femenino , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas de la Membrana/genética , Ratones , Proteínas Asociadas a Microtúbulos/genética , Proteínas de Unión al GTP Monoméricas/genética , Trasplante de Neoplasias , Fosforilación , Pronóstico , Proteínas de Unión al ARN/genética , Esferoides Celulares/metabolismo , Esferoides Celulares/patología , Análisis de Supervivencia , Neoplasias de la Mama Triple Negativas/genética , Regulación hacia Arriba
12.
Cancer Res ; 78(10): 2589-2600, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29463580

RESUMEN

The molecular pathways driving mesenchymal glioblastoma (GBM) are still not well understood. We report here that truncated glioma-associated oncogene homolog 1 (tGLI1) is a tumor-specific transcription factor that facilitates GBM growth, is enriched in the mesenchymal subtype of GBM and glioma stem cells (GSC), and promotes mesenchymal GSC by upregulating transcription of CD44. In an orthotopic GBM xenograft mouse model, tGLI1-overexpressing tumors grew more aggressively with increased proliferation and angiogenesis compared with control and GLI1-overexpressing xenografts. tGLI1 was highly expressed in GBM clinical specimens but undetectable in normal brains, whereas GLI1 was expressed in both tissues. A tGLI1 activation signature (tGAS) correlated with glioma grade, tumor angiogenesis, and poor overall survival, and GBMs with high tGAS were enriched with mesenchymal GBM/GSC gene signatures. Neurospheres contained increased levels of tGLI1, but not GLI1, compared with the monolayer culture; mesenchymal GSC expressed more tGLI1 than proneural GSC. Ectopic tGLI1 expression enhanced the ability of mesenchymal GSC to yield neurospheres in vitro and to form tumors in mouse brains. Selective tGLI1 knockdown reduced neurosphere formation of GBM cells. tGLI1 bound to and transactivated the promoter of the CD44 gene, a marker and mediator for mesenchymal GSC, leading to its expression. Collectively, these findings advance our understanding of GBM biology by establishing tGLI1 as a novel transcriptional activator of CD44 and a novel mediator of mesenchymal GBM and GSC.Significance: These findings highlight the role of a tumor-specific gain-of-function transcription factor tGLI1 in mesenchymal glioma stem cell maintenance and mesenchymal GBM growth. Cancer Res; 78(10); 2589-600. ©2018 AACR.


Asunto(s)
Neoplasias Encefálicas/patología , Glioblastoma/patología , Receptores de Hialuranos/metabolismo , Células Madre Neoplásicas/patología , Proteína con Dedos de Zinc GLI1/metabolismo , Animales , Neoplasias Encefálicas/mortalidad , Línea Celular Tumoral , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Glioblastoma/mortalidad , Células HEK293 , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Activación Transcripcional/genética , Trasplante Heterólogo , Proteína con Dedos de Zinc GLI1/genética
13.
Oncotarget ; 8(43): 73947-73963, 2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-29088759

RESUMEN

Breast cancer is the most common cancer in women and the second leading cause of cancer deaths in women. Over 90% of breast cancer deaths are attributable to metastasis. Our lab has recently reported that AKT activates heat shock factor 1 (HSF1), leading to epithelial-to-mesenchymal transition in HER2-positive breast cancer. However, it is unknown whether the AKT-HSF1 pathway plays an important role in other breast cancer subtypes, breast cancer stem cells, or breast cancer growth and metastasis. Herein, we showed AKT and HSF1 to be frequently co-activated in breast cancer cell lines and specimens across different subtypes. Activated AKT (S473) and HSF1 (S326) are strongly associated with shortened time to metastasis. Inhibition of the AKT-HSF1 signaling axis using small molecule inhibitors, HSF1 knockdown or the dominant-negative HSF1 mutant (S326A) reduced the growth of metastatic breast cancer cells and breast cancer stem cells. The combination of small molecule inhibitors targeting AKT (MK-2206) and HSF1 (KRIBB11) resulted in synergistic killing of breast cancer cells and breast cancer stem cells across different molecular subtypes. Using an orthotopic xenograft mouse model, we found that combined targeting of AKT and HSF1 to significantly reduce tumor growth, induce tumor apoptosis, delay time to metastasis, and prolong host survival. Taken together, our results indicate AKT-HSF1 signaling mediates breast cancer stem cells self-renewal, tumor growth and metastasis, and that dual targeting of AKT and HSF1 resulted in synergistic suppression of breast cancer progression thereby supporting future testing of AKT-HSF1 combination therapy for breast cancer patients.

14.
Biochemistry ; 56(42): 5698-5711, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-28956599

RESUMEN

The genome of Bacillus subtilis strain 168 contains the mother cell metabolic gene (mmg) operon that encodes homologues from the methylcitric acid cycle. We showed that the three genes, mmgDE and yqiQ(mmgF), provide three of the five steps of the methylcitric acid cycle. We also showed that the fourth step can be supplied by citB (aconitase), and we suggest that the fifth missing step, the propionyl-CoA synthetase, is probably skipped because the ß-oxidation of methyl-branched fatty acids by the enzymes encoded by mmgABC should produce propionyl-CoA. We also noted interesting enzymology for MmgD and MmgE. First, MmgD is a bifunctional citrate synthase/2-methylcitrate synthase with 2.3-fold higher activity as a 2-methylcitrate synthase. This enzyme catalyzes the formation of either (2S,3R)- or (2R,3S)-2-methylcitrate, but reports of 2-methylcitrate synthases from other species indicated that they produced the (2S,3S) isomer. However, we showed that MmgD and PrpC (from Escherichia coli) in fact produce the same stereoisomer. Second, the MmgE enzyme is not a stereospecific 2-methylcitrate dehydratase because it can dehydrate at least two of the four diastereomers of 2-methylcitrate to yield either (E)-2-methylaconitate or (Z)-2-methylaconitate. We also showed for the first time that the E. coli homologue PrpD exhibited the same lack of stereospecificity. However, the physiological pathways proceed via (Z)-2-methylaconitate, which served as the substrate for the citB enzyme in the synthesis of 2-methylisocitrate. We completed our characterization of this pathway by showing that the 2-methylisocitrate produced by CitB is converted to pyruvate and succinate by the enzyme YqiQ(MmgF).


Asunto(s)
Bacillus subtilis/metabolismo , Citratos/metabolismo , Operón/fisiología , Oxo-Ácido-Liasas/metabolismo , Bacillus subtilis/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hidroliasas/genética , Hidroliasas/metabolismo , Oxidación-Reducción , Oxo-Ácido-Liasas/genética , Estereoisomerismo
15.
Discov Med ; 23(128): 325-330, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28715648

RESUMEN

Tumor suppressor candidate 2 (TUSC2, also known as FUS1) was identified in 2000 as a candidate tumor suppressor gene located in a region on chromosome 3p21.3 that is homozygously deleted in some lung and breast cancers. The deletion is rare in lung and breast cancers, but is frequent in malignant pleural mesothelioma. Evidence to date indicates that TUSC2 behaves as a tumor suppressor in lung cancer; however, its role as a tumor suppressor for other tumor types has not been fully established. Loss of TUSC2 expression at the mRNA and protein levels has been reported in various cancers. While the mechanisms underlying the loss are still not well understood, several microRNAs have been reported to downregulate TUSC2 expression. TUSC2 elicits its anti-tumor effects through regulating G1 cell cycle progression, apoptosis, calcium homeostasis, gene expression, and the activity of various protein tyrosine kinases and Ser/Thr kinases, albeit the precise mechanisms that TUSC2 utilizes to regulate these cellular processes and signaling molecules are still elusive. TUSC2 restoration has been exploited as an anti-cancer therapy in various cancers in preclinical models, and clinically in patients with lung cancer. The first-in-human phase I trial demonstrated desirable safety outcomes. Phase I/II trials are being conducted to evaluate the efficacy of combining TUSC2-nanoparticles with erlotinib, an FDA-approved EGFR inhibitor. This review summarizes recent findings that advanced our understanding of TUSC2 as a novel tumor suppressor and a therapeutic opportunity for treating TUSC2-deficient cancers.


Asunto(s)
Genes Supresores de Tumor , Neoplasias/genética , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Modelos Biológicos , Neoplasias/patología , Neoplasias/terapia
16.
Front Biosci (Elite Ed) ; 8(2): 245-63, 2016 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26709660

RESUMEN

Breast cancer occurs in approximately 1 in 8 women and 1 in 37 women with breast cancer succumbed to the disease. Over the past decades, new diagnostic tools and treatments have substantially improved the prognosis of women with local diseases. However, women with metastatic disease still have a dismal prognosis without effective treatments. Among different molecular subtypes of breast cancer, the HER2-enriched and basal-like subtypes typically have higher rates of metastasis to the brain. Basal-like metastatic breast tumors frequently express EGFR. Consequently, HER2- and EGFR-targeted therapies are being used in the clinic and/or evaluated in clinical trials for treating breast cancer patients with brain metastases. In this review, we will first provide an overview of the HER2 and EGFR signaling pathways. The roles that EGFR and HER2 play in breast cancer metastasis to the brain will then be discussed. Finally, we will summarize the preclinical and clinical effects of EGFR- and HER2-targeted therapies on breast cancer metastasis.


Asunto(s)
Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Receptores ErbB/metabolismo , Receptor ErbB-2/metabolismo , Transducción de Señal , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Ensayos Clínicos como Asunto , Humanos , Modelos Biológicos
17.
Oncotarget ; 6(26): 22653-65, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26093087

RESUMEN

We recently discovered that truncated glioma-associated oncogene homolog 1 (TGLI1) is highly expressed in glioblastoma (GBM) and linked to increased GBM vascularity. The mechanisms underlying TGLI1-mediated angiogenesis are unclear. In this study, we compared TGLI1- with GLI1-expressing GBM xenografts for the expression profile of 84 angiogenesis-associated genes. The results showed that expression of six genes were upregulated and five were down-regulated in TGLI1-carrying tumors compared to those with GLI1. Vascular endothelial growth factor-C (VEGF-C) and tumor endothelial marker 7 (TEM7) were selected for further investigations because of their significant correlations with high vascularity in 135 patient GBMs. TGLI1 bound to both VEGF-C and TEM7 gene promoters. Conditioned medium from TGLI1-expressing GBM cells strongly induced tubule formation of brain microvascular endothelial cells, and the induction was prevented by VEGF-C/TEM7 knockdown. Immunohistochemical analysis of 122 gliomas showed that TGLI1 expression was positively correlated with VEGF-C, TEM7 and microvessel density. Analysis of NCBI Gene Expression Omnibus datasets with 161 malignant gliomas showed an inverse relationship between tumoral VEGF-C, TEM7 or microvessel density and patient survival. Together, our findings support an important role that TGLI1 plays in GBM angiogenesis and identify VEGF-C and TEM7 as novel TGLI1 target genes of importance to GBM vascularity.


Asunto(s)
Neoplasias Encefálicas/irrigación sanguínea , Glioblastoma/irrigación sanguínea , Proteínas de Neoplasias/biosíntesis , Receptores de Superficie Celular/biosíntesis , Factores de Transcripción/metabolismo , Factor C de Crecimiento Endotelial Vascular/biosíntesis , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Glioblastoma/genética , Glioblastoma/metabolismo , Xenoinjertos , Humanos , Inmunohistoquímica , Ratones , Ratones Desnudos , Proteínas de Neoplasias/genética , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Receptores de Superficie Celular/genética , Factores de Transcripción/genética , Transfección , Regulación hacia Arriba , Factor C de Crecimiento Endotelial Vascular/genética , Proteína con Dedos de Zinc GLI1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...