Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37447600

RESUMEN

Gel dressings, composed of polymers both natural and synthetic, are successfully used in the treatment of burn wounds. They protect the burn wound site against adverse external factors, ensure an adequate level of tissue hydration, have soothing and pain-relieving properties, and also support the healing process and reduce the risk of pathological scars. Another promising material that can be used in the wound-healing process is an amnion membrane. Due to its valuable properties such as protecting the body against bacterial infections and permeability to nutrition, it has found usage in different brands of medicine. In this work, we have combined the beneficial properties of hydrogels and amnion in order to make the laminar dressing that may serve for wound healing. For that purpose, the physically crosslinked cryogel of poly(vinyl alcohol) (PVA) was covered with an amnion membrane. Subsequently, gamma irradiation was performed, leading to the simultaneous internal crosslinking of the hydrogel, its permanent bonding with the amnion, and dressing sterilization. The physicochemical properties of the dressing including gel fraction, swelling, and hardness were studied. Biological tests such as the MTT assay, antimicrobial activity, and histopathological examination confirmed that the obtained material constituted a promising candidate for further, more in-depth studies aiming at wound dressing application.

2.
Cell Tissue Bank ; 23(4): 863-885, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35355193

RESUMEN

A burn is a sudden injury which immediate or long-term consequences may be life-threatening for the patient. A mass disaster event may involve large numbers of severely burned patients. Patients of this type typically have a limited area of healthy, unburned skin from which an autologous split thickness skin graft could be collected. In a clinical situation of this type, it is necessary to use a particular skin substitute. Non-viable allogeneic human skin graft materials might be considered as the most suitable skin substitutes in the treatment of such patients. At present, Poland does not have a sufficient supply of human allogeneic skin graft materials to meet the needs arising from a sudden and unforeseen mass disaster. This study involved an analysis of selected mass disasters. From this an estimate was made from a verified casualty profile of the necessary minimum stock of human allogeneic skin graft materials. An insufficient amount of skin results from an inadequate number of skin donors, which in turn results from the current tissue donation system. Therefore, a proposal has been made for the organizational, legal and systemic changes required to improve the situation in Polish transplantology, with particular emphasis on skin donation. In order to achieve a strategic stock of human skin grafts, a tissue collecting transplantation team should be organized. The rights and obligations of the non-physician transplant team member should be extended. Proposals have been made for awareness campaigns (adverts, posters etc.) and educational schemes (educational video, lectures during transplant coordinator training, etc.). Finally, a proposal has been made for possible methods to deal with the logistic management of the allogeneic skin stock. The required, essential stock of human allogeneic skin in the event of a mass disaster has been estimated at 600,000 cm2.


Asunto(s)
Quemaduras , Desastres , Trasplante de Células Madre Hematopoyéticas , Humanos , Trasplante de Piel/métodos , Polonia , Quemaduras/terapia
3.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672348

RESUMEN

In this work, we sought to examine whether the presence of alkyl substituents randomly distributed within the main chain of a 2-isopropyl-2-oxazoline-based copolymer will decrease its ability to crystallize when compared to its homopolymer. At the same time, we aimed to ensure an appropriate hydrophilic/lipophilic balance in the copolymer and maintain the phase transition in the vicinity of the human body temperature. For this reason, copolymers of 2-ethyl-4-methyl-2-oxazoline and 2-isopropyl-2-oxazoline were synthesized. The thermoresponsive behavior of the copolymers in water, the influence of salt on the cloud point, the presence of hysteresis of the phase transition and the crystallization ability in a water solution under long-term heating conditions were studied by turbidimetry. The ability of the copolymers to crystallize in the solid state, and their thermal properties, were analyzed by differential scanning calorimetry and X-ray diffractometry. A cytotoxicity assay was used to estimate the viability of human fibroblasts in the presence of the obtained polymers. The results allowed us to demonstrate a nontoxic alternative to poly(2-isopropyl-2-oxazoline) (PiPrOx) with a physiological phase transition temperature (LCST) and a greatly reduced tendency to crystallize. The synthesis of 2-oxazoline polymers with such well-defined properties is important for future biomedical applications.


Asunto(s)
Oxazoles/química , Polímeros/química , Cristalización , Fibroblastos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Transición de Fase , Polímeros/farmacología , Polímeros/toxicidad , Soluciones , Temperatura , Pruebas de Toxicidad , Agua/química
4.
Biomed Mater ; 9(6): 065005, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25358374

RESUMEN

3D fine porous structures obtained by electrospinning a poly[(R,S)-3-hydroxybutyrate] (aPHB)/ poly[(R)-3-hydroxybutyrate] (PHB) (85/15 w/w) blend were successfully modified with human procollagen type I by simple immersion of the polyester scaffold in an aqueous solution of the protein. Effective modification of the scaffold with human procollagen I was confirmed by an immunodetection test, which revealed the presence of the procollagen type I as an outer layer even on inner structures of the porous matrixes. Biological tests of 3D fabrics made of the PHB blend provide support for the adhesion and proliferation of human fibroblasts, while their modification with procollagen type I increased the biocompatibility of the final scaffolds significantly, as shown by the notable increase in the number of attached cells during the early hours of their incubation. Based on these findings, human procollagen type I surface-modified aPHB/PHB scaffolds should be considered a promising material in regenerative medicine.


Asunto(s)
Materiales Biocompatibles/química , Colágeno Tipo I/química , Hidroxibutiratos/química , Andamios del Tejido/química , Adhesión Celular , Proliferación Celular , Células Cultivadas , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Microscopía Electrónica de Rastreo , Péptidos/química , Poliésteres/química , Porosidad , Prohibitinas , Regeneración , Sales (Química)/química , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie , Ingeniería de Tejidos/métodos , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...