Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 13(4): e0191299, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29698491

RESUMEN

OBJECTIVE: We have previously demonstrated that insulin signaling, through the downstream signaling kinase Akt, is a potent modulator of dopamine transporter (DAT) activity, which fine-tunes dopamine (DA) signaling at the synapse. This suggests a mechanism by which impaired neuronal insulin receptor signaling, a hallmark of diet-induced obesity, may contribute to impaired DA transmission. We tested whether a short-term (two-week) obesogenic high-fat (HF) diet could reduce striatal Akt activity, a marker of central insulin, receptor signaling and blunt striatal and dopaminergic network responsiveness to amphetamine (AMPH). METHODS: We examined the effects of a two-week HF diet on striatal DAT activity in rats, using AMPH as a probe in a functional magnetic resonance imaging (fMRI) assay, and mapped the disruption in AMPH-evoked functional connectivity between key dopaminergic targets and their projection areas using correlation and permutation analyses. We used phosphorylation of the Akt substrate GSK3α in striatal extracts as a measure of insulin receptor signaling. Finally, we confirmed the impact of HF diet on striatal DA D2 receptor (D2R) availability using [18F]fallypride positron emission tomography (PET). RESULTS: We found that rats fed a HF diet for only two weeks have reductions in striatal Akt activity, a marker of decreased striatal insulin receptor signaling and blunted striatal responsiveness to AMPH. HF feeding also reduced interactions between elements of the mesolimbic (nucleus accumbens-anterior cingulate) and sensorimotor circuits (caudate/putamen-thalamus-sensorimotor cortex) implicated in hedonic feeding. D2R availability was reduced in HF-fed animals. CONCLUSION: These studies support the hypothesis that central insulin signaling and dopaminergic neurotransmission are already altered after short-term HF feeding. Because AMPH induces DA efflux and brain activation, in large part via DAT, these findings suggest that blunted central nervous system insulin receptor signaling through a HF diet can impair DA homeostasis, thereby disrupting cognitive and reward circuitry involved in the regulation of hedonic feeding.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Dieta Alta en Grasa/efectos adversos , Dopamina/metabolismo , Obesidad/inducido químicamente , Obesidad/metabolismo , Anfetamina/farmacología , Animales , Encéfalo/patología , Insulina/metabolismo , Masculino , Neostriado/efectos de los fármacos , Neostriado/metabolismo , Neostriado/patología , Red Nerviosa/efectos de los fármacos , Obesidad/patología , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D2/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
2.
Mol Metab ; 3(4): 394-407, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24944899

RESUMEN

Insulin signaling in the central nervous system (CNS) regulates energy balance and peripheral glucose homeostasis. Rictor is a key regulatory/structural subunit of the mTORC2 complex and is required for hydrophobic motif site phosphorylation of Akt at serine 473. To examine the contribution of neuronal Rictor/mTORC2 signaling to CNS regulation of energy and glucose homeostasis, we utilized Cre-LoxP technology to generate mice lacking Rictor in all neurons, or in either POMC or AgRP expressing neurons. Rictor deletion in all neurons led to increased fat mass and adiposity, glucose intolerance and behavioral leptin resistance. Disrupting Rictor in POMC neurons also caused obesity and hyperphagia, fasting hyperglycemia and pronounced glucose intolerance. AgRP neuron specific deletion did not impact energy balance but led to mild glucose intolerance. Collectively, we show that Rictor/mTORC2 signaling, especially in POMC-expressing neurons, is important for central regulation of energy and glucose homeostasis.

3.
Neuron ; 72(6): 977-90, 2011 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-22196333

RESUMEN

While the abuse of opiate drugs continues to rise, the neuroadaptations that occur with long-term drug exposure remain poorly understood. We describe here a series of chronic morphine-induced adaptations in ventral tegmental area (VTA) dopamine neurons, which are mediated via downregulation of AKT-mTORC2 (mammalian target of rapamycin complex-2). Chronic opiates decrease the size of VTA dopamine neurons in rodents, an effect seen in humans as well, and concomitantly increase the excitability of the cells but decrease dopamine output to target regions. Chronic morphine decreases mTORC2 activity, and overexpression of Rictor, a component of mTORC2, prevents morphine-induced changes in cell morphology and activity. Further, local knockout of Rictor in VTA decreases DA soma size and reduces rewarding responses to morphine, consistent with the hypothesis that these adaptations represent a mechanism of reward tolerance. Together, these findings demonstrate a novel role for AKT-mTORC2 signaling in mediating neuroadaptations to opiate drugs of abuse.


Asunto(s)
Adaptación Fisiológica/fisiología , Neuronas Dopaminérgicas/fisiología , Morfina/farmacología , Neuronas/fisiología , Transactivadores/fisiología , Área Tegmental Ventral/fisiología , Adaptación Fisiológica/efectos de los fármacos , Adolescente , Adulto , Animales , Neuronas Dopaminérgicas/efectos de los fármacos , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Factores de Transcripción , Área Tegmental Ventral/efectos de los fármacos , Adulto Joven
4.
PLoS Biol ; 8(6): e1000393, 2010 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-20543991

RESUMEN

The mammalian target of rapamycin (mTOR) complex 2 (mTORC2) is a multimeric signaling unit that phosphorylates protein kinase B/Akt following hormonal and growth factor stimulation. Defective Akt phosphorylation at the mTORC2-catalyzed Ser473 site has been linked to schizophrenia. While human imaging and animal studies implicate a fundamental role for Akt signaling in prefrontal dopaminergic networks, the molecular mechanisms linking Akt phosphorylation to specific schizophrenia-related neurotransmission abnormalities have not yet been described. Importantly, current understanding of schizophrenia suggests that cortical decreases in DA neurotransmission and content, defined here as cortical hypodopaminergia, contribute to both the cognitive deficits and the negative symptoms characteristic of this disorder. We sought to identify a mechanism linking aberrant Akt signaling to these hallmarks of schizophrenia. We used conditional gene targeting in mice to eliminate the mTORC2 regulatory protein rictor in neurons, leading to impairments in neuronal Akt Ser473 phosphorylation. Rictor-null (KO) mice exhibit prepulse inhibition (PPI) deficits, a schizophrenia-associated behavior. In addition, they show reduced prefrontal dopamine (DA) content, elevated cortical norepinephrine (NE), unaltered cortical serotonin (5-HT), and enhanced expression of the NE transporter (NET). In the cortex, NET takes up both extracellular NE and DA. Thus, we propose that amplified NET function in rictor KO mice enhances accumulation of both NE and DA within the noradrenergic neuron. This phenomenon leads to conversion of DA to NE and ultimately supports both increased NE tissue content as well as a decrease in DA. In support of this hypothesis, NET blockade in rictor KO mice reversed cortical deficits in DA content and PPI, suggesting that dysregulation of DA homeostasis is driven by alteration in NET expression, which we show is ultimately influenced by Akt phosphorylation status. These data illuminate a molecular link, Akt regulation of NET, between the recognized association of Akt signaling deficits in schizophrenia with a specific mechanism for cortical hypodopaminergia and hypofunction. Additionally, our findings identify Akt as a novel modulator of monoamine homeostasis in the cortex.


Asunto(s)
Proteínas Portadoras/fisiología , Dopamina/metabolismo , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/fisiología , Corteza Prefrontal/metabolismo , Esquizofrenia/fisiopatología , Animales , Proteínas Portadoras/genética , Ratones , Ratones Noqueados , Fosforilación , Proteínas Proto-Oncogénicas c-akt/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina , Serina/metabolismo , Transducción de Señal , Transactivadores/metabolismo , Factores de Transcripción
5.
Proc Natl Acad Sci U S A ; 104(38): 15117-22, 2007 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-17827280

RESUMEN

Little is known about genetic regulation of the development of white matter. This knowledge is critical in understanding the pathophysiology of neurodevelopmental syndromes associated with altered cognition as well as in elucidating the genetics of normal human cognition. The hemideletion of approximately 25 genes on chromosome 7q11.23 that causes Williams syndrome (WS) includes genes that regulate cytoskeletal dynamics in neurons, especially LIMK1 and CYLN2, and therefore offers the opportunity to investigate the role of these genes in the formation of white matter tracts. We used diffusion tensor imaging to demonstrate alteration in white matter fiber directionality, deviation in posterior fiber tract course, and reduced lateralization of fiber coherence in WS. These abnormalities are consistent with an alteration of the late stages of neuronal migration, define alterations of white matter structures underlying dissociable behavioral phenotypes in WS, and provide human in vivo information about genetic control of white matter tract formation.


Asunto(s)
Encéfalo/patología , Síndrome de Williams/genética , Síndrome de Williams/patología , Adulto , Corteza Cerebral/patología , Imagen de Difusión por Resonancia Magnética/métodos , Femenino , Humanos , Quinasas Lim/genética , Quinasas Lim/metabolismo , Masculino , Fibras Nerviosas Mielínicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...