Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
3 Biotech ; 6(2): 228, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28330300

RESUMEN

Electrodes based on graphite, graphene, and carbon nanomaterials have been used in the anode chamber of microbial fuel cells (MFCs). Carbon quantum dots (C-dots) are a class of versatile nanomaterials hitherto not reported in MFCs. C-dots previously synthesized from coconut husk were reported to possess hydroxyl and carboxyl functional groups on their surface. The presence of these functional groups on a carbon matrix conferred on the C-dots the ability to conduct and transfer electrons. Formation of silver nanoparticles from silver nitrate upon addition of C-dots confirmed their reducing ability. DREAM assay using a mixed microbial culture containing C-dots showed a 172% increase in electron transfer activity and thus confirmed the involvement of C-dots in supplementing redox activity of a microbial culture. Addition of C-dots as a suspension in the anode chamber of an MFC resulted in a 22.5% enhancement in maximum power density. C-dots showed better performance as electron shuttles than methylene blue, a conventional electron shuttle used in MFCs.

2.
Appl Biochem Biotechnol ; 177(8): 1767-75, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26386586

RESUMEN

Methylene blue undergoes reduction with an accompanying colour change reaction, from blue to colourless, enabling its use as a metric for estimating reducing power. A dye reduction-based electron-transfer activity monitoring (DREAM) assay is demonstrated as a tool to study and understand the process of microbes sourcing electrons from organic substrates and transferring them to an electron acceptor. The rate at which electrons can be transferred to the thermodynamically most feasible electron acceptor directly depends on the activity of microbes. Nature of available substrate determines the quantum of electrons available. Dissolved oxygen intercepts electrons from the microbes before they can be taken up by the dye. Sodium sulfite can be used to offset the detrimental effects of the presence of dissolved oxygen. This easy-to-perform assay has been demonstrated as a proof-of-concept having potential to be extended to other practical applications.


Asunto(s)
Bacterias/aislamiento & purificación , Agua Potable/microbiología , Azul de Metileno/metabolismo , Agua Potable/química , Transporte de Electrón , Oxígeno/metabolismo
3.
Nano Lett ; 13(12): 5771-6, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24224861

RESUMEN

Nanostructured carbons are posited to offer an alternative to silicon and lead to further miniaturization of photonic and electronic devices. Here, we report the experimental realization of the first all-carbon solid-state optical diode that is based on axially asymmetric nonlinear absorption in a thin saturable absorber (graphene) and a thin reverse saturable absorber (C60) arranged in tandem. This all-optical diode action is polarization independent and has no phase-matching constraints. The nonreciprocity factor of the device can be tuned by varying the number of graphene layers and the concentration or thickness of the C60 coating. This ultracompact graphene/C60 based optical diode is versatile with an inherently large bandwidth, chemical and thermal stability, and is poised for cost-effective large-scale integration with existing fabrication technologies.


Asunto(s)
Carbono/química , Grafito/química , Nanotubos de Carbono/química , Óptica y Fotónica , Absorción , Nanoestructuras/química , Silicio/química
4.
Photochem Photobiol Sci ; 12(10): 1780-6, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23824278

RESUMEN

Two novel optical power limiters, 2-[ethyl-(4-phenylazo-phenyl)-amino]-ethanol (E4PA) and 2-[ethyl-(4-trifluoromethyl-phenylazo-phenyl)-amino]-ethanol (E4TPA) were synthesized using a diazotization reaction. The purified azo material was made into thin films in a poly(methyl methacrylate) matrix using a gravity settling technique. The electronic nonlinearities of these films were investigated using an open aperture Z-scan technique in the fs excitation regime, resulting in nonlinear absorption due to a two-photon absorption (2PA) process. The 2PA coefficient for these films is of the order 10(-12) m W(-1) and the limiting threshold values are 1.1 J cm(-2) each. A non-degenerate pump probe set-up was employed with CW lasers to study the nonlinear behaviour arising from photo-induced anisotropy and excited-state absorption. The present study shows that these azo thin films are potential candidates for active and passive optical power limiting applications.

5.
Biotechnol Lett ; 35(4): 553-8, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23264264

RESUMEN

Oxygen availability is a potential rate-limiting step in the bioelectrochemical process catalyzed by microbes in microbial fuel cells (MFC). Determination of oxygen availability using a minimally invasive oxygen sensor is advantageous in terms of ease of usage, maintenance and cost-effectiveness as compared to using conventional probe-type oxygen sensors. The utility of this method is substantiated by using this sensor to demonstrate the relationship between oxygen availability and current density. 10 % drop in oxygen concentration resulted in a concomitant drop in current density by about 36 %, further establishing the criticality of monitoring oxygen levels in the MFC. The detachable sensor membrane of the minimally invasive sensor confers multiple advantages. The novel method would enable real-time monitoring of oxygen in MFCs, simplify process optimization and validation and more importantly, provide an impetus for development of more efficient MFC designs.


Asunto(s)
Fuentes de Energía Bioeléctrica , Técnicas de Química Analítica/métodos , Oxígeno/análisis , Electricidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA