Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Lett ; 44(12): 1379-1387, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36183295

RESUMEN

Finger millet [Eleusine coracana (L.) Gaertn.] is an important cereal because of its mineral-nutrition value. With the increasing demand, there is a pressing need to conserve it through biotechnological approaches. High-frequency somatic embryogenesis from seed-derived callus of E. coracana was developed on Murashige-Skoog (MS) medium supplemented with a combination of auxins [Indole-3-acetic acid (IAA), 2,4-Dichlorophenoxy acetic acid (2,4-D)] and cytokinins [6-Benzylaminopurine (BAP), kinetin (KN)] in different concentrations, ranging from 0.1 to 5.0 mg L-1. Seeds cultured on this medium produced three different types of primary callus. Type I callus was very compact and dark brown, type II callus was light brownish and type III callus appeared whitish and light brown. All three types of calli had differential proliferation responses. Type II compact brown calli were obtained on the MS medium supplemented with 1.0 and 1.5 mg 2,4-Dichlorophenoxy acetic acid L-1 and 0.5 mg kinetin L-1. Friable yellowish embryogenic calli with a large number of somatic embryos were developed within 60 days after being transferred to auxins and cytokinin (1.0 and 1.5 mg 2,4-Dichlorophenoxy acetic acid L-1 and 0.5 mg Kinetin L-1) along with 200 mg casein hydrolysate L-1. Germination of somatic embryos on a half-strength MS medium supplemented with 0.1% Kinetin led to the development of healthy plantlets within 30 days. Genetic fingerprinting using random amplified polymorphic DNA (RAPD) revealed high levels of genetic fidelity. The study provides methods and hormonal concentrations required to develop somatic embryos in E. coracana for its genetic improvement and conservation.


Asunto(s)
Eleusine , Cinetina/farmacología , Eleusine/genética , Técnica del ADN Polimorfo Amplificado Aleatorio , Ácidos Indolacéticos , Desarrollo Embrionario
2.
J Genet Eng Biotechnol ; 19(1): 178, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34825986

RESUMEN

BACKGROUND: Finger millet is the most important food grain in the world for its nutritional benefits. Finger millet is genetically and geographically diverse and widely spread in the African and Asian sub-continent. Therefore, the present study was undertaken to analyze the genetic diversity using ISSR genetic markers using 15 ISSR primers. RESULTS: About 23 genotypes of widely cultivated finger millet cultivars of economically important ones were characterized and the ISSR markers were critically analyzed for their performance with parameters such as polymorphic information content (PIC), effective multiplex ratio (EMR), marker index (MI), and resolving power (RP). In this study, 175 loci were scored across the 23 cultivars of finger millet, and out of these 173 loci (98%) were polymorphic, revealing the suitability of these loci for genetic diversity analysis with ISSR marker. The average number of polymorphic loci per primer was 11.50 with varying sizes from 100 bp to 2500 bp. ISSR primers that showed higher polymorphism were found to have higher EMR and MI values up to 15.30 and 13.44, respectively. CONCLUSION: High degree of polymorphism supported with distinct differences of all the marker parameters revealed the suitability of ISSR markers for determining the genotypic differences based on ISSR markers among the 23 genotypes of finger millet. The possible application of the ISSR marker in the conservation and management of finger millet genetic resources is discussed.

4.
Environ Sci Pollut Res Int ; 28(26): 33942-33956, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33661494

RESUMEN

Human utilization of natural resources acts as a main driver in altering the ecosystem service and functions. Apart from indirect influence, these human activities also tempt for the behavioral shift in insects especially in honey bees. The foraging behavior of honey bees from the natural floral resources to the man-made food sources eventually degrade the ecosystem's services and cause declining of the honey bee population. Understanding this foraging behavior of bees could help in opting for viable conservation measures for honey bees. In order to understand the influence of human utilization of natural resources on the foraging behavior of bees and its negative impacts on the bee population, the study was carried out in the sites where humans collect palm sap. Palm sap collectors used different containers (mud pots and pet bottles) to collect the palm sap from Borassus flabellifer. The number of containers per tree, volume of palm sap per container/tree, bee visiting frequency, and bee mortality per container/tree were measured at different ecosystems. Palm saps were collected freshly and volatile compounds of samples were identified using FT-IR and GC-MS analysis. The identified volatile compounds were used to study the interaction between volatile compounds and odorant-binding proteins (OBPs) of honey bees for understanding the foraging behavior of bees using in silico approach. Our results clearly showed that bee visitation frequency was directly correlated (0.94) with bee mortality in palm sap in different study sites. The average number of bee mortality was recorded as 491.2 ± 23.48 bees per container/tree/day. GC-MS analyses revealed the presence of 35 volatile compounds in collected palm sap from different study sites. Furthermore, molecular docking studies were performed for all 35 palm volatile compounds OBPs of honey bees to analyze their binding affinities. Docking studies showed that 1-methylbutylmandelate and 6-(hydroxymethyl)-1,4,4-trimethylbicyclo [3.1.0] hexan-2-ol have high binding affinity with OBP residues of bees. These volatile compounds might act as an attractant for bee populations for their foraging behavior. Based on this study, we conclude that human utilization of palm sap has created new ecological niches which highly alters the foraging behavior of bees and results in declining bee populations.


Asunto(s)
Ecosistema , Flores , Animales , Abejas , Humanos , Simulación del Acoplamiento Molecular , Recursos Naturales , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...