Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Inf Model ; 62(20): 4888-4905, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36215146

RESUMEN

The online encyclopedia Wikipedia aggregates a large amount of data on chemistry, encompassing well over 20,000 individual Wikipedia pages and serves the general public as well as the chemistry community. Many other chemical databases and services utilize these data, and previous projects have focused on methods to index, search, and extract it for review and use. We present a comprehensive effort that combines bulk automated data extraction over tens of thousands of pages, semiautomated data extraction over hundreds of pages, and fine-grained manual extraction of individual lists and compounds of interest. We then correlate these data with the existing contents of the U.S. Environmental Protection Agency's (EPA) Distributed Structure-Searchable Toxicity (DSSTox) database. This was performed with a number of intentions including ensuring as complete a mapping as possible between the Dashboard and Wikipedia so that relevant snippets of the article are loaded for the user to review. Conflicts between Dashboard content and Wikipedia in terms of, for example, identifiers such as chemical registry numbers, names, and InChIs and structure-based collisions such as SMILES were identified and used as the basis of curation of both DSSTox and Wikipedia. This work also allowed us to evaluate available data for sets of chemicals of interest to the Agency, such as synthetic cannabinoids, and expand the content in DSSTox as appropriate. This work also led to improved bidirectional linkage of the detailed chemistry and usage information from Wikipedia with expert-curated structure and identifier data from DSSTox for a new list of nearly 20,000 chemicals. All of this work ultimately enhances the data mappings that allow for the display of the introduction of the Wikipedia article in the community-accessible web-based EPA Comptox Chemicals Dashboard, enhancing the user experience for the thousands of users per day accessing the resource.


Asunto(s)
Cannabinoides , Internet
2.
J Chem Ecol ; 35(7): 785-95, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19588197

RESUMEN

Larvae of the bollworm Helicoverpa zea (Boddie) show some tolerance to Bacillus thuringiensis (Bt) Cry1Ac, and can survive on Cry1Ac-expressing Bt cotton, which should increase resistance development concerns. However, field-evolved resistance has not yet been observed. In a previous study, a population of H. zea was selected for stable resistance to Cry1Ac toxin. In the present study, we determined in laboratory bioassays if larvae of the Cry1Ac toxin-resistant H. zea population show higher survival rates on field-cultivated Bt cotton squares (= flower buds) collected prebloom-bloom than susceptible H. zea. Our results show that Cry1Ac toxin-resistant H. zea cannot complete larval development on Cry1Ac-expressing Bt cotton, despite being more than 150-fold resistant to Cry1Ac toxin and able to survive until pupation on Cry1Ac toxin concentrations greater than present in Bt cotton squares. Since mortality observed for Cry1Ac-resistant H. zea on Bt cotton was higher than expected, we investigated whether Cry1Ac interacts with gossypol and or other compounds offered with cotton powder in artificial diet. Diet incorporation bioassays were conducted with Cry1Ac toxin alone, and with gossypol and 4% cotton powder in the presence and absence of Cry1Ac. Cry1Ac toxin was significantly more lethal to susceptible H. zea than to resistant H. zea, but no difference in susceptibility to gossypol was observed between strains. However, combinations of Cry1Ac with gossypol or cotton powder were synergistic against resistant, but not against susceptible H. zea. Gossypol concentrations in individual larvae showed no significant differences between insect strains, or between larvae fed gossypol alone vs. those fed gossypol plus Cry1Ac. These results may help explain the inability of Cry1Ac-resistant H. zea to complete development on Bt cotton, and the absence of field-evolved resistance to Bt cotton by this pest.


Asunto(s)
Proteínas Bacterianas/farmacología , Endotoxinas/farmacología , Gossypium/química , Proteínas Hemolisinas/farmacología , Insecticidas/farmacología , Lepidópteros/efectos de los fármacos , Animales , Toxinas de Bacillus thuringiensis , Flores/química , Gosipol/farmacología , Resistencia a los Insecticidas , Larva/efectos de los fármacos , Control Biológico de Vectores , Sinergistas de Plaguicidas
3.
Appl Environ Microbiol ; 74(2): 462-9, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18024681

RESUMEN

Laboratory-selected Bacillus thuringiensis-resistant colonies are important tools for elucidating B. thuringiensis resistance mechanisms. However, cotton bollworm, Helicoverpa zea, a target pest of transgenic corn and cotton expressing B. thuringiensis Cry1Ac (Bt corn and cotton), has proven difficult to select for stable resistance. Two populations of H. zea (AR and MR), resistant to the B. thuringiensis protein found in all commercial Bt cotton varieties (Cry1Ac), were established by selection with Cry1Ac activated toxin (AR) or MVP II (MR). Cry1Ac toxin reflects the form ingested by H. zea when feeding on Bt cotton, whereas MVP II is a Cry1Ac formulation used for resistance selection and monitoring. The resistance ratio (RR) for AR exceeded 100-fold after 11 generations and has been maintained at this level for nine generations. This is the first report of stable Cry1Ac resistance in H. zea. MR crashed after 11 generations, reaching only an RR of 12. AR was only partially cross-resistant to MVP II, suggesting that MVP II does not have the same Cry1Ac selection pressure as Cry1Ac toxin against H. zea and that proteases may be involved with resistance. AR was highly cross-resistant to Cry1Ab toxin but only slightly cross-resistant to Cry1Ab expressing corn leaf powder. AR was not cross-resistant to Cry2Aa2, Cry2Ab2-expressing corn leaf powder, Vip3A, and cypermethrin. Toxin-binding assays showed no significant differences, indicating that resistance was not linked to a reduction in binding. These results aid in understanding why this pest has not evolved B. thuringiensis resistance, and highlight the need to choose carefully the form of B. thuringiensis protein used in experiments.


Asunto(s)
Bacillus thuringiensis/genética , Gossypium/parasitología , Resistencia a los Insecticidas/genética , Mariposas Nocturnas/crecimiento & desarrollo , Animales , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Endotoxinas/genética , Endotoxinas/metabolismo , Gossypium/genética , Gossypium/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Mariposas Nocturnas/genética , Control Biológico de Vectores , Plantas Modificadas Genéticamente , Unión Proteica
4.
J Invertebr Pathol ; 95(3): 224-6, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17467005

RESUMEN

Transgenic crops producing insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) have been grown in many parts of the world since 1996. In the United States, the Environmental Protection Agency (EPA) has required that industry submit insect resistance management (IRM) plans for each Bt corn and cotton product commercialized. A coalition of stakeholders including the EPA, USDA, academic scientists, industry, and grower organizations have cooperated in developing specific IRM strategies. Resistance monitoring (requiring submission of annual reports to the EPA), and a remedial action plan addressing any contingency if resistance should occur, are important elements of these strategies. At a global level, Monsanto conducts baseline susceptibility studies (prior to commercialization), followed by monitoring studies on target pest populations, for all of its commercialized Bt crop products. To date, Monsanto has conducted baseline/monitoring studies in Argentina, Australia, Brazil, Canada, China, Colombia, India, Mexico, the Philippines, South Africa, Spain, and the United States. Examples of pests on which resistance monitoring has been conducted include cotton bollworm, Helicoverpa zea, European corn borer, Ostrinia nubilalis, pink bollworm, Pectinophora gossypiella, Southwestern corn borer, Diatraea grandiosella, tobacco budworm, Heliothis virescens, and western corn rootworm, Diabrotica virgifera virgifera, in the United States, cotton bollworm, Helicoverpa armigera, in China, India and Australia, and H. virescens and H. zea in Mexico. No field-selected resistance to Bt crops has been documented.


Asunto(s)
Proteínas Bacterianas/farmacología , Toxinas Bacterianas/farmacología , Endotoxinas/farmacología , Proteínas Hemolisinas/farmacología , Insectos/efectos de los fármacos , Resistencia a los Insecticidas/efectos de los fármacos , Insecticidas/farmacología , Plantas Modificadas Genéticamente , Animales , Toxinas de Bacillus thuringiensis , Monitoreo del Ambiente/métodos , Salud Global , Gossypium/genética , Gossypium/microbiología , Insectos/genética , Insectos/crecimiento & desarrollo , Resistencia a los Insecticidas/genética , Cooperación Internacional , Zea mays/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA