Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxins (Basel) ; 15(10)2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37888631

RESUMEN

Ants are among the most abundant terrestrial invertebrate predators on Earth. To overwhelm their prey, they employ several remarkable behavioral, physiological, and biochemical innovations, including an effective paralytic venom. Ant venoms are thus cocktails of toxins finely tuned to disrupt the physiological systems of insect prey. They have received little attention yet hold great promise for the discovery of novel insecticidal molecules. To identify insect-neurotoxins from ant venoms, we screened the paralytic activity on blowflies of nine synthetic peptides previously characterized in the venom of Tetramorium bicarinatum. We selected peptide U11, a 34-amino acid peptide, for further insecticidal, structural, and pharmacological experiments. Insecticidal assays revealed that U11 is one of the most paralytic peptides ever reported from ant venoms against blowflies and is also capable of paralyzing honeybees. An NMR spectroscopy of U11 uncovered a unique scaffold, featuring a compact triangular ring helix structure stabilized by a single disulfide bond. Pharmacological assays using Drosophila S2 cells demonstrated that U11 is not cytotoxic, but suggest that it may modulate potassium conductance, which structural data seem to corroborate and will be confirmed in a future extended pharmacological investigation. The results described in this paper demonstrate that ant venom is a promising reservoir for the discovery of neuroactive insecticidal peptides.


Asunto(s)
Venenos de Hormiga , Hormigas , Animales , Venenos de Hormiga/farmacología , Venenos de Hormiga/química , Péptidos/farmacología , Péptidos/química , Hormigas/química
2.
Biomolecules ; 13(3)2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36979381

RESUMEN

Currently, crop protection relies heavily on chemical treatments, which ultimately leads to environmental contamination and pest resistance. Societal and public policy considerations urge the need for new eco-friendly solutions. In this perspective, biopesticides are effective alternatives to chemical insecticides for the control of various insect pests. Legumes contain numerous insecticidal proteins aimed at protecting their high nitrogen content from animal/insect predation. Investigating one such protein family at genome scale, we discovered a unique diversity of the albumin 1 family in the (model) barrel medic genome. Only some members retained very high insecticidal activity. We uncovered that AG41 peptide from the alfalfa roots displays an outstanding insecticidal activity against several pests such as aphids and weevils. Here we report the 3D structure and activity of AG41 peptide. Significant insights into the structural/functional relationships explained AG41 high insecticidal activity. Such observations pave the way for the development of bio-insecticides, with AG41 peptide as the lead compound.


Asunto(s)
Fabaceae , Insecticidas , Animales , Insecticidas/farmacología , Insecticidas/química , Insectos , Péptidos/farmacología , Albúminas
3.
Int J Mol Sci ; 23(20)2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36293341

RESUMEN

Aphids (Hemiptera: Aphidoidea) are among the most detrimental insects for agricultural plants, and their management is a great challenge in agronomical research. A new class of proteins, called Bacteriocyte-specific Cysteine-Rich (BCR) peptides, provides an alternative to chemical insecticides for pest control. BCRs were initially identified in the pea aphid Acyrthosiphon pisum. They are small disulfide bond-rich proteins expressed exclusively in aphid bacteriocytes, the insect cells that host intracellular symbiotic bacteria. Here, we show that one of the A. pisum BCRs, BCR4, displays prominent insecticidal activity against the pea aphid, impairing insect survival and nymphal growth, providing evidence for its potential use as a new biopesticide. Our comparative genomics and phylogenetic analyses indicate that BCRs are restricted to the aphid lineage. The 3D structure of BCR4 reveals that this peptide belongs to an as-yet-unknown structural class of peptides and defines a new superfamily of defensins.


Asunto(s)
Áfidos , Insecticidas , Animales , Áfidos/metabolismo , Filogenia , Insecticidas/farmacología , Insecticidas/metabolismo , Cisteína/metabolismo , Agentes de Control Biológico/metabolismo , Simbiosis , Péptidos/farmacología , Péptidos/metabolismo , Disulfuros/metabolismo , Defensinas/genética , Defensinas/farmacología , Defensinas/metabolismo
4.
Int J Mol Sci ; 22(9)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-34066955

RESUMEN

Peptidoglycan recognition proteins (PGRPs) are ubiquitous among animals and play pivotal functions in insect immunity. Non-catalytic PGRPs are involved in the activation of immune pathways by binding to the peptidoglycan (PGN), whereas amidase PGRPs are capable of cleaving the PGN into non-immunogenic compounds. Drosophila PGRP-LB belongs to the amidase PGRPs and downregulates the immune deficiency (IMD) pathway by cleaving meso-2,6-diaminopimelic (meso-DAP or DAP)-type PGN. While the recognition process is well analyzed for the non-catalytic PGRPs, little is known about the enzymatic mechanism for the amidase PGRPs, despite their essential function in immune homeostasis. Here, we analyzed the specific activity of different isoforms of Drosophila PGRP-LB towards various PGN substrates to understand their specificity and role in Drosophila immunity. We show that these isoforms have similar activity towards the different compounds. To analyze the mechanism of the amidase activity, we performed site directed mutagenesis and solved the X-ray structures of wild-type Drosophila PGRP-LB and its mutants, with one of these structures presenting a protein complexed with the tracheal cytotoxin (TCT), a muropeptide derived from the PGN. Only the Y78F mutation abolished the PGN cleavage while other mutations reduced the activity solely. Together, our findings suggest the dynamic role of the residue Y78 in the amidase mechanism by nucleophilic attack through a water molecule to the carbonyl group of the amide function destabilized by Zn2+.


Asunto(s)
Amidohidrolasas/metabolismo , Proteínas Portadoras/metabolismo , Drosophila melanogaster/metabolismo , Amidohidrolasas/química , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Peptidoglicano , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína , Azúcares/metabolismo , Factores de Virulencia de Bordetella , Zinc/metabolismo
5.
Sci Rep ; 7(1): 4902, 2017 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-28687751

RESUMEN

PA1b (Pea Albumin 1, subunit b) peptide is an entomotoxin, extracted from Legume seeds, with a lethal activity towards several insect pests, such as mosquitoes, some aphids and cereal weevils. This toxin acts by binding to the subunits c and e of the plasma membrane H+-ATPase (V-ATPase) in the insect midgut. In this study, two cereal weevils, the sensitive Sitophilus oryzae strain WAA42, the resistance Sitophilus oryzae strain ISOR3 and the insensitive red flour beetle Tribolium castaneum, were used in biochemical and histological experiments to demonstrate that a PA1b/V-ATPase interaction triggers the apoptosis mechanism, resulting in insect death. Upon intoxication with PA1b, apoptotic bodies are formed in the cells of the insect midgut. In addition, caspase-3 enzyme activity occurs in the midgut of sensitive weevils after intoxication with active PA1b, but not in the midgut of resistant weevils. These biochemical data were confirmed by immuno-histochemical detection of the caspase-3 active form in the midgut of sensitive weevils. Immuno-labelling experiments also revealed that the caspase-3 active form and V-ATPase are close-localized in the insect midgut. The results concerning this unique peptidic V-ATPase inhibitor pave the way for the utilization of PA1b as a promising, more selective and eco-friendly insecticide.


Asunto(s)
Proteínas de Insectos/genética , Insecticidas/toxicidad , Péptidos/toxicidad , Pisum sativum/genética , Proteínas de Plantas/toxicidad , Toxinas Biológicas/toxicidad , ATPasas de Translocación de Protón Vacuolares/genética , Animales , Apoptosis , Caspasa 3/genética , Caspasa 3/metabolismo , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo , Regulación de la Expresión Génica , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/metabolismo , Insecticidas/aislamiento & purificación , Insecticidas/metabolismo , Pisum sativum/química , Pisum sativum/parasitología , Péptidos/aislamiento & purificación , Péptidos/metabolismo , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Unión Proteica , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Semillas/química , Semillas/genética , Semillas/parasitología , Toxinas Biológicas/aislamiento & purificación , Toxinas Biológicas/metabolismo , Tribolium/efectos de los fármacos , Tribolium/metabolismo , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , ATPasas de Translocación de Protón Vacuolares/metabolismo , Gorgojos/efectos de los fármacos , Gorgojos/metabolismo
6.
Toxicon ; 89: 67-76, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25064271

RESUMEN

The Pea Albumin 1 subunit b (PA1b) peptide is an entomotoxin extracted from legume seeds with lethal activity towards several insect pests. Its toxic activity occurs after the perception of PA1b by a plasmalemmic proton pump (V-ATPase) in the insects. Assays revealed that PA1b showed no activity towards mammalian cells displaying high V-ATPase activity. Similarly, PA1b displayed no binding activity and no biological activity towards other non-insect organisms. We demonstrate here that binding to labelled PA1b was found in all the insect families tested, regardless of the sensitivity or insensitivity of the individual species. The coleopteran Bruchidae, which are mainly legume seed pests, were found to be fully resistant. A number of insect species were seen to be insensitive to the toxin although they exhibited binding activity for the labelled PA1b. The fruit fly, Drosophila melanogaster (Diptera), was generally insensitive when maintained on an agar diet, but the fly appeared to be sensitive to PA1b in bioassays using a different diet. In conclusion, the PA1b toxin provides legumes with a major source of resistance to insects, and insects feeding on legume seeds need to overcome this plant resistance by disrupting the PA1b - V-ATPase interaction.


Asunto(s)
Fabaceae/química , Insectos/efectos de los fármacos , Plaguicidas/toxicidad , Proteínas de Plantas/toxicidad , ATPasas de Translocación de Protón Vacuolares/química , Secuencia de Aminoácidos , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Escarabajos/efectos de los fármacos , Drosophila melanogaster/efectos de los fármacos , Humanos , Proteínas de Insectos/química , Resistencia a los Insecticidas , Células MCF-7 , Ratones , Datos de Secuencia Molecular , Osteoclastos/efectos de los fármacos , Plaguicidas/química , Proteínas de Plantas/química , Semillas/química , Pruebas de Toxicidad
7.
PLoS One ; 8(12): e81619, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24349099

RESUMEN

The PA1b (Pea Albumin 1, subunit b) peptide is an entomotoxin extract from Legume seeds with lethal activity on several insect pests, such as mosquitoes, some aphids and cereal weevils. This 37 amino-acid cysteine-rich peptide has been, until now, obtained by biochemical purification or chemical synthesis. In this paper, we present our results for the transient production of the peptide in Nicotiana benthamiana by agro-infiltration, with a yield of about 35 µg/g of fresh leaves and maximum production 8 days after infiltration. PA1b is part of the PA1 gene which, after post-translational modifications, encodes two peptides (PA1b and PA1a). We show that transforming tobacco with the PA1b cDNA alone does not result in production of the toxin and, in fact, the entire cDNA is necessary, raising the question of the role of PA1a. We constructed a PA1-cassette, allowing for the quick "cut/paste" of different PA1b mutants within a conserved PA1 cDNA. This cassette enabled us to produce the six isoforms of PA1b which exist in pea seeds. Biological tests revealed that all the isoforms display similar activity, with the exception of one which is inactive. The lack of activity in this isoform led us to conclude that the amphiphilic nature of the peptide is necessary for activity. The possible applications of this expression system for other cysteine-rich biomolecules are discussed.


Asunto(s)
Insecticidas/química , Nicotiana/genética , Pisum sativum/química , Proteínas de Plantas/química , Subunidades de Proteína/química , Toxinas Biológicas/química , Secuencia de Aminoácidos , Agentes de Control Biológico , ADN Complementario , Expresión Génica , Interacciones Hidrofóbicas e Hidrofílicas , Insecticidas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Pisum sativum/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Procesamiento Proteico-Postraduccional , Subunidades de Proteína/biosíntesis , Subunidades de Proteína/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Nicotiana/metabolismo , Toxinas Biológicas/biosíntesis , Toxinas Biológicas/genética
8.
BMC Chem Biol ; 12: 3, 2012 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-22536832

RESUMEN

BACKGROUND: Because of the increasingly concern of consumers and public policy about problems for environment and for public health due to chemical pesticides, the search for molecules more safe is currently of great importance. Particularly, plants are able to fight the pathogens as insects, bacteria or fungi; so that plants could represent a valuable source of new molecules. RESULTS: It was observed that Medicago truncatula seed flour displayed a strong toxic activity towards the adults of the rice weevil Sitophilus oryzae (Coleoptera), a major pest of stored cereals. The molecule responsible for toxicity was purified, by solvent extraction and HPLC, and identified as a saponin, namely 3-GlcA-28-AraRhaxyl-medicagenate. Saponins are detergents, and the CMC of this molecule was found to be 0.65 mg per mL. Neither the worm Caenorhabditis elegans nor the bacteria E. coli were found to be sensitive to this saponin, but growth of the yeast Saccharomyces cerevisiae was inhibited at concentrations higher than 100 µg per mL. The purified molecule is toxic for the adults of the rice weevils at concentrations down to 100 µg per g of food, but this does not apply to the others insects tested, including the coleopteran Tribolium castaneum and the Sf9 insect cultured cells. CONCLUSIONS: This specificity for the weevil led us to investigate this saponin potential for pest control and to propose the hypothesis that this saponin has a specific mode of action, rather than acting via its non-specific detergent properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...