Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Imaging ; 9(11)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37998092

RESUMEN

In this study, we aimed to enhance the contouring accuracy of cardiac pacemakers by improving their visualization using deep learning models to predict MV CBCT images based on kV CT or CBCT images. Ten pacemakers and four thorax phantoms were included, creating a total of 35 combinations. Each combination was imaged on a Varian Halcyon (kV/MV CBCT images) and Siemens SOMATOM CT scanner (kV CT images). Two generative adversarial network (GAN)-based models, cycleGAN and conditional GAN (cGAN), were trained to generate synthetic MV (sMV) CBCT images from kV CT/CBCT images using twenty-eight datasets (80%). The pacemakers in the sMV CBCT images and original MV CBCT images were manually delineated and reviewed by three users. The Dice similarity coefficient (DSC), 95% Hausdorff distance (HD95), and mean surface distance (MSD) were used to compare contour accuracy. Visual inspection showed the improved visualization of pacemakers on sMV CBCT images compared to original kV CT/CBCT images. Moreover, cGAN demonstrated superior performance in enhancing pacemaker visualization compared to cycleGAN. The mean DSC, HD95, and MSD for contours on sMV CBCT images generated from kV CT/CBCT images were 0.91 ± 0.02/0.92 ± 0.01, 1.38 ± 0.31 mm/1.18 ± 0.20 mm, and 0.42 ± 0.07 mm/0.36 ± 0.06 mm using the cGAN model. Deep learning-based methods, specifically cycleGAN and cGAN, can effectively enhance the visualization of pacemakers in thorax kV CT/CBCT images, therefore improving the contouring precision of these devices.

2.
Diagnostics (Basel) ; 13(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36832155

RESUMEN

Developers and users of artificial-intelligence-based tools for automatic contouring and treatment planning in radiotherapy are expected to assess clinical acceptability of these tools. However, what is 'clinical acceptability'? Quantitative and qualitative approaches have been used to assess this ill-defined concept, all of which have advantages and disadvantages or limitations. The approach chosen may depend on the goal of the study as well as on available resources. In this paper, we discuss various aspects of 'clinical acceptability' and how they can move us toward a standard for defining clinical acceptability of new autocontouring and planning tools.

3.
Comput Med Imaging Graph ; 90: 101907, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33845433

RESUMEN

PURPOSE: We conducted our study to develop a tool capable of automatically detecting dental artifacts in a CT scan on a slice-by-slice basis and to assess the dosimetric impact of implementing the tool into the Radiation Planning Assistant (RPA), a web-based platform designed to fully automate the radiation therapy treatment planning process. METHODS: We developed an automatic dental artifact identification tool and assessed the dosimetric impact of its use in the RPA. Three users manually annotated 83,676 head-and-neck (HN) CT slices (549 patients). Majority-voting was applied to the individual annotations to determine the presence or absence of dental artifacts. The patients were divided into train, cross-validation, and test data sets (ratio: 3:1:1, respectively). A random subset of images without dental artifacts was used to balance classes (1:1) in the training data set. The Inception-V3 deep learning model was trained with the binary cross-entropy loss function. With use of this model, we automatically identified artifacts on 15 RPA HN plans on a slice-by-slice basis and investigated three dental artifact management methods applied before and after volumetric modulated arc therapy (VMAT) plan optimization. The resulting dose distributions and target coverage were quantified. RESULTS: Per-slice accuracy, sensitivity, and specificity were 99 %, 91 %, and 99 %, respectively. The model identified all patients with artifacts. Small dosimetric differences in total plan dose were observed between the various density-override methods (±1 Gy). For the pre- and post-optimized plans, 90 % and 99 %, respectively, of dose comparisons resulted in normal structure dose differences of ±1 Gy. Differences in the volume of structures receiving 95 % of the prescribed dose (V95[%]) were ≤0.25 % for 100 % of plans. CONCLUSION: The dosimetric impact of applying dental artifact management before and after artifact plan optimization was minor. Our results suggest that not accounting for dental artifacts in the current RPA workflow (where only post-optimization dental artifact management is possible) may result in minor dosimetric differences. If RPA users choose to override CT densities as a solution to managing dental artifacts, our results suggest segmenting the volume of the artifact and overriding its density to water is a safe option.


Asunto(s)
Artefactos , Radioterapia de Intensidad Modulada , Humanos , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...