Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Biofuels ; 8: 193, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26613003

RESUMEN

BACKGROUND: Photosynthetic cyanobacteria are attractive for a range of biotechnological applications including biofuel production. However, due to slow growth, screening of mutant libraries using microtiter plates is not feasible. RESULTS: We present a method for high-throughput, single-cell analysis and sorting of genetically engineered l-lactate-producing strains of Synechocystis sp. PCC6803. A microfluidic device is used to encapsulate single cells in picoliter droplets, assay the droplets for l-lactate production, and sort strains with high productivity. We demonstrate the separation of low- and high-producing reference strains, as well as enrichment of a more productive l-lactate-synthesizing population after UV-induced mutagenesis. The droplet platform also revealed population heterogeneity in photosynthetic growth and lactate production, as well as the presence of metabolically stalled cells. CONCLUSIONS: The workflow will facilitate metabolic engineering and directed evolution studies and will be useful in studies of cyanobacteria biochemistry and physiology.

2.
Biomicrofluidics ; 9(4): 044128, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26392830

RESUMEN

We investigate the impact of droplet culture conditions on cell metabolic state by determining key metabolite concentrations in S. cerevisiae cultures in different microfluidic droplet culture formats. Control of culture conditions is critical for single cell/clone screening in droplets, such as directed evolution of yeast, as cell metabolic state directly affects production yields from cell factories. Here, we analyze glucose, pyruvate, ethanol, and glycerol, central metabolites in yeast glucose dissimilation to establish culture formats for screening of respiring as well as fermenting yeast. Metabolite profiling provides a more nuanced estimate of cell state compared to proliferation studies alone. We show that the choice of droplet incubation format impacts cell proliferation and metabolite production. The standard syringe incubation of droplets exhibited metabolite profiles similar to oxygen limited cultures, whereas the metabolite profiles of cells cultured in the alternative wide tube droplet incubation format resemble those from aerobic culture. Furthermore, we demonstrate retained droplet stability and size in the new better oxygenated droplet incubation format.

3.
Proc Natl Acad Sci U S A ; 112(34): E4689-96, 2015 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-26261321

RESUMEN

There is an increasing demand for biotech-based production of recombinant proteins for use as pharmaceuticals in the food and feed industry and in industrial applications. Yeast Saccharomyces cerevisiae is among preferred cell factories for recombinant protein production, and there is increasing interest in improving its protein secretion capacity. Due to the complexity of the secretory machinery in eukaryotic cells, it is difficult to apply rational engineering for construction of improved strains. Here we used high-throughput microfluidics for the screening of yeast libraries, generated by UV mutagenesis. Several screening and sorting rounds resulted in the selection of eight yeast clones with significantly improved secretion of recombinant α-amylase. Efficient secretion was genetically stable in the selected clones. We performed whole-genome sequencing of the eight clones and identified 330 mutations in total. Gene ontology analysis of mutated genes revealed many biological processes, including some that have not been identified before in the context of protein secretion. Mutated genes identified in this study can be potentially used for reverse metabolic engineering, with the objective to construct efficient cell factories for protein secretion. The combined use of microfluidics screening and whole-genome sequencing to map the mutations associated with the improved phenotype can easily be adapted for other products and cell types to identify novel engineering targets, and this approach could broadly facilitate design of novel cell factories.


Asunto(s)
Genoma Fúngico , Microfluídica , Mutación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Cell ; 161(7): 1566-75, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26073943

RESUMEN

The contribution of cell generation to physiological heart growth and maintenance in humans has been difficult to establish and has remained controversial. We report that the full complement of cardiomyocytes is established perinataly and remains stable over the human lifespan, whereas the numbers of both endothelial and mesenchymal cells increase substantially from birth to early adulthood. Analysis of the integration of nuclear bomb test-derived (14)C revealed a high turnover rate of endothelial cells throughout life (>15% per year) and more limited renewal of mesenchymal cells (<4% per year in adulthood). Cardiomyocyte exchange is highest in early childhood and decreases gradually throughout life to <1% per year in adulthood, with similar turnover rates in the major subdivisions of the myocardium. We provide an integrated model of cell generation and turnover in the human heart.


Asunto(s)
Miocitos Cardíacos/citología , Células Endoteliales/citología , Corazón/fisiología , Humanos , Antígenos Comunes de Leucocito/metabolismo , Mesodermo/citología , Miocardio/citología , Poliploidía , Datación Radiométrica
5.
Lab Chip ; 14(4): 806-13, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24366236

RESUMEN

A high-throughput method for single cell screening by microfluidic droplet sorting is applied to a whole-genome mutated yeast cell library yielding improved production hosts of secreted industrial enzymes. The sorting method is validated by enriching a yeast strain 14 times based on its α-amylase production, close to the theoretical maximum enrichment. Furthermore, a 10(5) member yeast cell library is screened yielding a clone with a more than 2-fold increase in α-amylase production. The increase in enzyme production results from an improvement of the cellular functions of the production host in contrast to previous droplet-based directed evolution that has focused on improving enzyme protein structure. In the workflow presented, enzyme producing single cells are encapsulated in 20 pL droplets with a fluorogenic reporter substrate. The coupling of a desired phenotype (secreted enzyme concentration) with the genotype (contained in the cell) inside a droplet enables selection of single cells with improved enzyme production capacity by droplet sorting. The platform has a throughput over 300 times higher than that of the current industry standard, an automated microtiter plate screening system. At the same time, reagent consumption for a screening experiment is decreased a million fold, greatly reducing the costs of evolutionary engineering of production strains.


Asunto(s)
Ingeniería Genética/métodos , Industrias , Técnicas Analíticas Microfluídicas/métodos , alfa-Amilasas/biosíntesis , Bacillus/enzimología , Bacillus/genética , Levaduras/genética , alfa-Amilasas/genética
6.
Lab Chip ; 13(9): 1754-61, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23478908

RESUMEN

Enzyme kinetics and inhibition is important for a wide range of disciplines including pharmacology, medicine and industrial bioprocess technology. We present a novel microdroplet-based device for extensive characterization of the reaction kinetics of enzyme substrate inhibitor systems in a single experiment utilizing an integrated droplet picoinjector for bioanalysis. This device enables the scanning of multiple fluorescently-barcoded inhibitor concentrations and substrate conditions in a single, highly time-resolved experiment yielding the Michaelis constant (Km), the turnover number (kcat) and the enzyme inhibitor dissociation constants (ki, ki'). Using this device we determine Km and kcat for ß-galactosidase and the fluorogenic substrate Resorufin ß-D-galactopyranoside (RBG) to be 442 µM and 1070 s(-1), respectively. Furthermore, we examine the inhibitory effects of isopropyl-ß-D-thiogalactopyranoside (IPTG) on ß-galactosidase. This system has a number of potential applications, for example it could be used to screen inhibitors to pharmaceutically relevant enzymes and to characterize engineered enzyme variants for biofuels production, in both cases acquiring detailed information about the enzyme catalysis and enzyme inhibitor interaction at high throughput and low cost.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Técnicas Analíticas Microfluídicas , Modelos Químicos , beta-Galactosidasa/química , Cinética , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...