Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 63(14): 6315-6323, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38530136

RESUMEN

Complexation of uranyl ions with two structurally related C-pivotal tripodal amides with varying spacer lengths, synthesized for the first time, was studied by optical spectroscopy. In the tripodal amides, the coordination was through the carbonyl O atoms where the carbonyl groups were away from the central C-atom by three spacer atoms (LI) and four spacer atoms (LII), respectively. Increasing the spacer atoms going from LI to LII favors the complexation with the linear uranyl cations and results in stronger complex formation. The complexation heat between the uranyl cations and the two amide ligands was directly measured by microcalorimetric titrations. The complexation with both the ligands was driven by exothermic enthalpy and positive entropy changes. Formation of the complex proceeded by the replacement of water molecules from the primary coordination sphere of the uranyl cation. Both ligands formed bisolvated (ML2-type) complexes in which one unit of the ligand binds in a monodentate manner and the other in a bidentate mode. Density functional theory calculations further supported our experimental observations.

2.
Inorg Chem ; 63(5): 2533-2552, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38272469

RESUMEN

A multitechnique approach with theoretical insights has been employed to understand the complexation of trivalent lanthanides with two ß-diketones, viz. 1-phenyl-1,3-butanedione (L1) and 4,4,4-trifluoro-1-phenyl-1,3-butanedione (L2), in an ionic liquid (C6mim·NTf2). UV-vis spectral analysis of complexation using Nd3+ revealed the predominance of ML2+ and ML4- species. The stability constants for the PB complexes were higher (ß2 ∼ 10.45 ± 0.05, ß4 ∼ 15.51 ± 0.05) than those for the TPB (ß2 ∼ 7.56 ± 0.05, ß4 ∼ 13.19 ± 0.06). The photoluminescence titration using Eu3+ corroborated the same observations with slightly higher stability constants, probably due to the higher ionic potential of Eu3+. The more asymmetric (AL2ML4 ∼ 5.2) Eu-L2 complex was found to contain one water molecule in the primary coordination sphere of Eu3+ with more covalency of the Eu3+-O bond (Ω2L1 = 8.5 × 10-20, Ω4L1 = 1.3 × 10-20) compared to the less asymmetric Eu-L1 complex (AL1ML4 ∼ 3.5) with two water molecules having less Eu-O covalency (Judd-Offelt parameters: Ω2L1 = 7.3 × 10-20, Ω4L1 = 1.0 × 10-20). Liquid-liquid extraction studies involving Nd3+ and Eu3+ revealed the formation of the ML4- complex following an 'anion exchange' mechanism. The shift of the enol peak from 1176 to 1138 cm-1 on the complexation of the ß-diketones with Eu3+ was confirmed from the FTIR spectra. 1H NMR titration of the ß-diketones with La(NTf2)3 evidenced the participation of α-H of the ß-diketones and protons at C2, C4, and C5 positions of the methylimidazolium ring. For the ML2 complex, 4 donor O atoms are suggested to coordinate to the trivalent lanthanides with bond distances of 2.3297-2.411 Å for La-O, 2.206-2.236 Å for Eu-O, and 2.217-2.268 Å for Nd-O, respectively, while for the ML4 complex, 8 donor O atoms were coordinated with bond lengths of 2.506-2.559 Å for La-O, 2.367-2.447 Å for Eu-O, and 2.408-2.476 Å for Nd-O. The Nd3+ ion was higher by 9.7 kcal·mol-1 than that of the La3+ ion for the 1:4 complex. The complexation energy with L1 was quite higher than that with L2 for both 1:2 and 1:4 complexes. Using cyclic voltammetry, the redox behavior of trivalent lanthanides Eu and Gd with ß-diketonate in ionic liquid medium was probed and their redox energetic and kinetic parameters were determined.

3.
Inorg Chem ; 62(48): 19631-19647, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37970800

RESUMEN

The complexation of the betadiketone,1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-4,6-octanedione (HFOD) was studied with trivalent lanthanide ions, viz. Nd3+, La3+, and Eu3+ in several methylimidazolium-based ionic liquids (Cnmim•NTf2, where, n = 4,6,8). In C6mim•NTf2, predominant formation of ML2+ and ML4- species was evidenced from the UV-vis absorption (Nd3+) as well as luminescence (Eu3+) spectral studies with log ß2 ≈ 5.88 ± 0.04, log ß4 ≈ 10.95 ± 0.06. The formation constants followed the trend C4mim•NTf2 > C6mim•NTf2 > C8mim•NTf2. The asymmetry factors for the ML2+ and ML4- species were found to be 1.2 and 1.59, respectively. The ML4- complex was found to have one primary coordination sphere water molecule with enhanced covalency between Eu3+ and O from HFOD (Judd Offelt constants Ω2 and Ω4 ≈ 17.2 and 2.35) compared to Eu3+aq, yet comparable to other ß diketones. Complexation-induced temperature increase was confirmed by calorimetric measurements, indicating the exothermic complexation reaction (ΔHcomplexation ≈ -13.7 kJ mol-1), which is also spontaneous in nature (ΔG ≈ -68.1 kJ mol-1), with an enhancement in the entropy values. Due to complexation, the shifts in the peak positions (1686.66 cm-1, 1633.53 cm-1) associated with ß diketone/ketone functional groups were evidenced. Density functional theory (DFT) calculation was performed to optimize the structural parameters including bond distance, bond angles, and energetics associated with the complexation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...