Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Endocrinology ; 165(4)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38298132

RESUMEN

Early puberty poses a significant challenge for male Atlantic salmon in aquaculture due to its negative impact on growth and welfare. The regulation of puberty in vertebrates involves 2 key reproductive hormones: follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and their gonadal receptors. In male mice lacking FSH receptor, testes size is reduced, but fertility is maintained, while medaka and zebrafish with a disrupted fshr gene exhibit near normal testis size and fertility. In these fishes both Fsh and Lh are present during puberty and Lh may rescue fertility, while in salmonid fish only Fsh is present in the circulation during puberty. Using CRISPR-Cas9, we produced crispants with a high prevalence of fshr mutations at the target site, which remained fertile, although more than half showed a testis development deviating from wild-type (wt) males. Crossing out these F0 crispants to each other produced a viable F1 generation showing frameshift (fshr-/-) or in-frame mutations (fshrif/if). Nearly all wt males matured while all fshr-/- males remained immature with small testes containing A spermatogonia as the furthest developed germ cell type and prepubertal plasma androgen levels. Also, the pituitary transcript levels of gnrhr2bba and lhb, but not for fshb, were reduced in the fshr-/- males compared with maturing males. More than half of the fshrif/if mutant males showed no or a delayed maturation. In conclusion, Atlantic salmon show the unique characteristic that loss of Fshr function alone results in male infertility, offering new opportunities to control precocious puberty or fertility in salmon.


Asunto(s)
Receptores de HFE , Salmo salar , Masculino , Animales , Ratones , Receptores de HFE/genética , Receptores de HFE/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Pez Cebra/genética , Maduración Sexual/genética , Hormona Folículo Estimulante/metabolismo , Testículo/metabolismo
2.
Front Endocrinol (Lausanne) ; 13: 826920, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35370944

RESUMEN

Precocious male maturation causes reduced welfare and increased production costs in Atlantic salmon (Salmo salar) aquaculture. The pituitary produces and releases follicle-stimulating hormone (Fsh), the gonadotropin triggering puberty in male salmonids. However, little is known about how Fsh production is regulated in Atlantic salmon. We examined, in vivo and ex vivo, transcriptional changes of gonadotropin-related genes accompanying the initial steps of testis maturation, in pituitaries of males exposed to photoperiod and temperature conditions promoting maturation (constant light and 16°C). Pituitary fshb, lhb and gnrhr2bba transcripts increased in vivo in maturing males (gonado-somatic index > 0.1%). RNA sequencing (RNAseq) analysis using pituitaries from genetically similar males carrying the same genetic predisposition to mature, but differing by responding or not responding to stimulatory environmental conditions, revealed 144 differentially expressed genes, ~2/3rds being up-regulated in responders, including fshb and other pituitary hormones, steroid-related and other puberty-associated transcripts. Functional enrichment analyses confirmed gene involvement in hormone/steroid production and gonad development. In ex vivo studies, whole pituitaries were exposed to a selection of hormones and growth factors. Gonadotropin-releasing hormone (Gnrh), 17ß-estradiol (E2) and 11-ketotestosterone (11-KT) up-regulated gnrhr2bba and lhb, while fshb was up-regulated by Gnrh but down-regulated by 11-KT in pituitaries from immature males. Also pituitaries from maturing males responded to Gnrh and sex steroids by increased gnrhr2bba and lhb transcript levels, but fshb expression remained unchanged. Growth factors (inhibin A, activin A and insulin-like growth factor 1) did not change gnrhr2bba, lhb or fshb transcript levels in pituitaries either from immature or maturing males. Additional pituitary ex vivo studies on candidates identified by RNAseq showed that these transcripts were preferentially regulated by Gnrh and sex steroids, but not by growth factors, and that Gnrh/sex steroids were less effective when incubating pituitaries from maturing males. Our results suggest that a yet to be characterized mechanism up-regulating fshb expression in the salmon pituitary is activated in response to stimulatory environmental conditions prior to morphological signs of testis maturation, and that the transcriptional program associated with this mechanism becomes unresponsive or less responsive to most stimulators ex vivo once males had entered pubertal developmental in vivo.


Asunto(s)
Salmo salar , Animales , Expresión Génica , Gonadotropinas/metabolismo , Gonadotropinas/farmacología , Gonadotropinas Hipofisarias/genética , Masculino , Salmo salar/genética , Salmo salar/metabolismo , Maduración Sexual/genética
3.
BMC Genomics ; 22(1): 563, 2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294050

RESUMEN

BACKGROUND: New breeding technologies (NBT) using CRISPR/Cas9-induced homology directed repair (HDR) has the potential to expedite genetic improvement in aquaculture. The long generation time in Atlantic salmon makes breeding an unattractive solution to obtain homozygous mutants and improving the rates of perfect HDR in founder (F0) fish is thus required. Genome editing can represent small DNA changes down to single nucleotide replacements (SNR). This enables edits such as premature stop codons or single amino acid changes and may be used to obtain fish with traits favorable to aquaculture, e.g. disease resistance. A method for SNR has not yet been demonstrated in salmon. RESULTS: Using CRISPR/Cas9 and asymmetrical ODNs, we were able to perform precise SNR and introduce a premature stop codon in dnd in F0 salmon. Deep sequencing demonstrated up to 59.2% efficiency in single embryos. In addition, using the same asymmetrical ODN design, we inserted a FLAG element into slc45a2 and dnd, showing high individual perfect HDR efficiencies (up to 36.7 and 32.7%, respectively). CONCLUSIONS: In this work, we demonstrate that precise SNR and knock-in (KI) can be performed in F0 salmon embryos using asymmetrical oligonucleotide (ODN) donors. We suggest that HDR-induced SNR can be applied as a powerful NBT, allowing efficient introgression of favorable alleles and bypassing challenges associated with traditional selective breeding.


Asunto(s)
Sistemas CRISPR-Cas , Salmo salar , Alelos , Animales , Sistemas CRISPR-Cas/genética , Edición Génica , Nucleótidos , Oligonucleótidos , Salmo salar/genética
4.
Commun Biol ; 4(1): 204, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33589679

RESUMEN

Pituitary hormones can use local signaling molecules to regulate target tissue functions. In adult zebrafish testes, follicle-stimulating hormone (Fsh) strongly increases the production of insulin-like 3 (Insl3), a Leydig cell-derived growth factor found in all vertebrates. Little information is available regarding Insl3 function in adult spermatogenesis. The Insl3 receptors Rxfp2a and 2b were expressed by type A spermatogonia and Sertoli and myoid cells, respectively, in zebrafish testis tissue. Loss of insl3 increased germ cell apoptosis in males starting at 9 months of age, but spermatogenesis appeared normal in fully fertile, younger adults. Insl3 changed the expression of 409 testicular genes. Among others, retinoic acid (RA) signaling was up- and peroxisome proliferator-activated receptor gamma (Pparg) signaling was down-regulated. Follow-up studies showed that RA and Pparg signaling mediated Insl3 effects, resulting in the increased production of differentiating spermatogonia. This suggests that Insl3 recruits two locally active nuclear receptor pathways to implement pituitary (Fsh) stimulation of spermatogenesis.


Asunto(s)
Insulina/metabolismo , Proteínas/metabolismo , Células de Sertoli/metabolismo , Espermatogénesis , Espermatogonias/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Apoptosis , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Insulina/genética , Masculino , PPAR gamma/genética , PPAR gamma/metabolismo , Proteínas/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Células de Sertoli/efectos de los fármacos , Transducción de Señal , Espermatogénesis/efectos de los fármacos , Espermatogonias/efectos de los fármacos , Espermatogonias/patología , Transcriptoma , Tretinoina/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética
5.
BMC Genomics ; 21(1): 99, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32000659

RESUMEN

BACKGROUND: Sustainability challenges are currently hampering an increase in salmon production. Using sterile salmon can solve problems with precocious puberty and genetic introgression from farmed escapees to wild populations. Recently sterile salmon was produced by knocking out the germ cell-specific dead end (dnd). Several approaches may be applied to inhibit Dnd function, including gene knockout, knockdown or immunization. Since it is challenging to develop a successful treatment against a gene product already existing in the body, alternative targets are being explored. Germ cells are surrounded by, and dependent on, gonadal somatic cells. Targeting genes essential for the survival of gonadal somatic cells may be good alternative targets for sterility treatments. Our aim was to identify and characterize novel germ cell and gonadal somatic factors in Atlantic salmon. RESULTS: We have for the first time analysed RNA-sequencing data from germ cell-free (GCF)/dnd knockout and wild type (WT) salmon testis and searched for genes preferentially expressed in either germ cells or gonadal somatic cells. To exclude genes with extra-gonadal expression, our dataset was merged with available multi-tissue transcriptome data. We identified 389 gonad specific genes, of which 194 were preferentially expressed within germ cells, and 11 were confined to gonadal somatic cells. Interestingly, 5 of the 11 gonadal somatic transcripts represented genes encoding secreted TGF-ß factors; gsdf, inha, nodal and two bmp6-like genes, all representative vaccine targets. Of these, gsdf and inha had the highest transcript levels. Expression of gsdf and inha was further confirmed to be gonad specific, and their spatial expression was restricted to granulosa and Sertoli cells of the ovary and testis, respectively. Finally, we show that inha expression increases with puberty in both ovary and testis tissue, while gsdf expression does not change or decreases during puberty in ovary and testis tissue, respectively. CONCLUSIONS: This study contributes with transcriptome data on salmon testis tissue with and without germ cells. We provide a list of novel and known germ cell- and gonad somatic specific transcripts, and show that the expression of two highly active gonadal somatic secreted TGF-ß factors, gsdf and inha, are located within granulosa and Sertoli cells.


Asunto(s)
Perfilación de la Expresión Génica/veterinaria , Proteínas de Unión al ARN/genética , Salmo salar/genética , Testículo/química , Animales , Proteínas de Peces/genética , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Redes Reguladoras de Genes , Masculino , Especificidad de Órganos , Análisis de Secuencia de ARN/veterinaria , Espermatozoides/química , Testículo/citología
6.
Acta Neuropathol Commun ; 7(1): 55, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30971321

RESUMEN

Melanoma patients carry a high risk of developing brain metastases, and improvements in survival are still measured in weeks or months. Durable disease control within the brain is impeded by poor drug penetration across the blood-brain barrier, as well as intrinsic and acquired drug resistance. Augmented mitochondrial respiration is a key resistance mechanism in BRAF-mutant melanomas but, as we show in this study, this dependence on mitochondrial respiration may also be exploited therapeutically. We first used high-throughput pharmacogenomic profiling to identify potentially repurposable compounds against BRAF-mutant melanoma brain metastases. One of the compounds identified was ß-sitosterol, a well-tolerated and brain-penetrable phytosterol. Here we show that ß-sitosterol attenuates melanoma cell growth in vitro and also inhibits brain metastasis formation in vivo. Functional analyses indicated that the therapeutic potential of ß-sitosterol was linked to mitochondrial interference. Mechanistically, ß-sitosterol effectively reduced mitochondrial respiratory capacity, mediated by an inhibition of mitochondrial complex I. The net result of this action was increased oxidative stress that led to apoptosis. This effect was only seen in tumor cells, and not in normal cells. Large-scale analyses of human melanoma brain metastases indicated a significant role of mitochondrial complex I compared to brain metastases from other cancers. Finally, we observed completely abrogated BRAF inhibitor resistance when vemurafenib was combined with either ß-sitosterol or a functional knockdown of mitochondrial complex I. In conclusion, based on its favorable tolerability, excellent brain bioavailability, and capacity to inhibit mitochondrial respiration, ß-sitosterol represents a promising adjuvant to BRAF inhibitor therapy in patients with, or at risk for, melanoma brain metastases.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Melanoma/genética , Melanoma/metabolismo , Mitocondrias/efectos de los fármacos , Proteínas Proto-Oncogénicas B-raf/genética , Sitoesteroles/administración & dosificación , Animales , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/complicaciones , Línea Celular Tumoral , Reposicionamiento de Medicamentos , Femenino , Humanos , Melanoma/complicaciones , Ratones Transgénicos , Mitocondrias/metabolismo , Mutación , Estrés Oxidativo/efectos de los fármacos , Transcriptoma
7.
Mol Cancer Res ; 16(1): 78-89, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29021233

RESUMEN

Transcripts derived from the PTEN pseudogene (PTENP1) function as decoys to adsorb miRNAs targeting the PTEN tumor suppressor for degradation, and PTENP1 upregulation is known to inhibit growth in preclinical cancer models. Here, PTENP1 3'UTR transduction influences PTEN, AKT/mTOR signaling, and tumor progression in estrogen receptor (ER)-positive and -negative breast cancer cells. PTENP1 upregulation decreases PTEN gene expression in the ER-positive MCF7 and T47D human breast carcinoma cells and accelerates MCF7 tumor growth in vivo Of note, PTENP1 transduction significantly decreases ERα (ESR1) mRNA and protein levels in MCF7 xenografts with a concomitant increase in hsa-miR-26a, a miRNA known to target ESR1 In the ER-negative MDA-MB-231 and C3HBA breast cancer cells, upregulation of PTENP1 increases PTEN gene expression with no influence on hsa-miR-26a, ESR1, or ERα expression. While PTENP1 transduction did not influence the growth rate of human MDA-MB-231 xenografts, PTENP1 upregulation profoundly reduces its metastatic propensity. Furthermore, PTENP1 significantly inhibits the growth rate of ER-negative C3HBA murine breast cancer xenografts. PTENP1 transduction had no influence on doxorubicin cytotoxicity in ER-positive MCF7 cells but an increase in doxorubicin sensitivity was observed in the ER-negative MDA-MB-231 cells. In summary, while PTENP1 upregulation decreased PTEN transcript levels and stimulated the growth of ER-positive breast cancers, increased PTEN transcript levels and inhibited tumor progression was observed in the ER-negative cells.Implications: This report highlights the profound biological activity of PTENP1 in breast cancer, which is dictated by the hormone receptor status. Mol Cancer Res; 16(1); 78-89. ©2017 AACR.


Asunto(s)
Neoplasias de la Mama/genética , Receptor alfa de Estrógeno/genética , MicroARNs/genética , Fosfohidrolasa PTEN/genética , Regiones no Traducidas 3' , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Xenoinjertos , Humanos , Neoplasias Mamarias Experimentales , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos NOD , Ratones SCID , Fosfohidrolasa PTEN/biosíntesis , Seudogenes , Transducción de Señal
8.
Sci Rep ; 7(1): 12584, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28974703

RESUMEN

In all vertebrates studied so far, germ cells are not required for pubertal maturation of the gonadal steroidogenic system, subsequent development of secondary sex characteristics and reproductive behavior. To explore if the absence of germ cells affects puberty or growth in Atlantic salmon, germ cell-free (GCF), dnd knockout and wild type (WT) postsmolts were stimulated to enter puberty. No GCF fish entered puberty, whereas 66.7% (males) and 30% (females) WT fish completed or entered puberty, respectively. Expression of genes related to steroidogenesis (star, cyp17a1, cyp11ß, cyp19a1a), gonadal somatic cells (insl3, amh, igf3), oocytes (bmp15), gonadotropin receptors (fshr, lhcgr), and pituitary gonadotropic cells (fshb, lhb, gnrhr4) showed an immature status and failure to up-regulate gonadal sex steroid production in male and female GCF fish was also reflected in low or undetectable plasma sex steroids (11-ketotestosterone, estradiol-17ß and testosterone). A gender difference (high in females, low in males) was found in the expression of star and cyp17a1 in GCF fish. No clear difference in growth was detected between GCF and immature WT fish, while growth was compromised in maturing WT males. We demonstrate for the first time in a vertebrate that germ cells are required for pubertal activation of the somatic steroidogenic cells.


Asunto(s)
Proteínas de Peces/genética , Hormonas Esteroides Gonadales/genética , Pubertad/genética , Salmo salar/genética , Procesos de Determinación del Sexo , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Sustitución del Gen , Células Germinativas/crecimiento & desarrollo , Células Germinativas/metabolismo , Hormonas Esteroides Gonadales/biosíntesis , Masculino , Oocitos/crecimiento & desarrollo , Pubertad/fisiología , Salmo salar/crecimiento & desarrollo , Maduración Sexual/genética
9.
Sci Rep ; 6: 21284, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26888627

RESUMEN

Introgression of farmed salmon escapees into wild stocks is a major threat to the genetic integrity of wild populations. Using germ cell-free fish in aquaculture may mitigate this problem. Our study investigated whether it is possible to produce germ cell-free salmon in F0 by using CRISPR-Cas9 to knock out dnd, a factor required for germ cell survival in vertebrates. To avoid studying mosaic animals, sgRNA targeting alb was simultaneously used as a visual tracer since the phenotype of alb KO is complete loss of pigmentation. Induced mutations for the tracer (alb) and the target (dnd) genes were highly correlated and produced germ cell-less fish lacking pigmentation, underlining the suitability of alb KO to serve as tracer for targeted double allelic mutations in F0 animals in species with prohibitively long generation times. This is also the first report describing dnd knockout in any fish species. Analyzing gene expression and histology of dnd KO fish revealed that sex differentiation of the somatic compartment does not depend on the presence of germ cells. However, the organization of the ovarian somatic compartment seems compromised in mutant fish.


Asunto(s)
Proteínas de Peces/genética , Técnicas de Silenciamiento del Gen , Células Germinativas/metabolismo , Proteínas de Unión al ARN/genética , Salmo salar , Diferenciación Sexual/genética , Animales , Sistemas CRISPR-Cas , Femenino , Proteínas de Peces/metabolismo , Masculino , Proteínas de Unión al ARN/metabolismo , Salmo salar/genética , Salmo salar/metabolismo
10.
Int J Mol Sci ; 16(9): 21658-80, 2015 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-26370983

RESUMEN

To facilitate efficient drug delivery to tumor tissue, several nanomaterials have been designed, with combined diagnostic and therapeutic properties. In this work, we carried out fundamental in vitro and in vivo experiments to assess the labeling efficacy of our novel theranostic nanoprobe, consisting of glycogen conjugated with a red fluorescent probe and gadolinium. Microscopy and resazurin viability assays were used to study cell labeling and cell viability in human metastatic melanoma cell lines. Fluorescence lifetime correlation spectroscopy (FLCS) was done to investigate nanoprobe stability. Magnetic resonance imaging (MRI) was performed to study T1 relaxivity in vitro, and contrast enhancement in a subcutaneous in vivo tumor model. Efficient cell labeling was demonstrated, while cell viability, cell migration, and cell growth was not affected. FLCS showed that the nanoprobe did not degrade in blood plasma. MRI demonstrated that down to 750 cells/µL of labeled cells in agar phantoms could be detected. In vivo MRI showed that contrast enhancement in tumors was comparable between Omniscan contrast agent and the nanoprobe. In conclusion, we demonstrate for the first time that a non-toxic glycogen-based nanoprobe may effectively visualize tumor cells and tissue, and, in future experiments, we will investigate its therapeutic potential by conjugating therapeutic compounds to the nanoprobe.


Asunto(s)
Melanoma/metabolismo , Melanoma/patología , Imagen Molecular/métodos , Sondas Moleculares , Imagen Multimodal , Nanotecnología , Línea Celular Tumoral , Movimiento Celular , Supervivencia Celular , Medios de Contraste/química , Citoplasma/metabolismo , Glucógeno/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Lisosomas/metabolismo , Imagen por Resonancia Magnética/métodos , Espectrometría de Fluorescencia , Coloración y Etiquetado
11.
FASEB J ; 29(11): 4695-712, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26220176

RESUMEN

Intercellular communication between cancer cells, especially between cancer and stromal cells, plays an important role in disease progression. We examined the intercellular transfer of organelles and proteins in vitro and in vivo and the role of tunneling nanotubes (TNTs) in this process. TNTs are membrane bridges that facilitate intercellular transfer of organelles of unclear origin. Using 3-dimensional quantitative and qualitative confocal microscopy, we showed that TNTs contain green fluorescent protein (GFP)-early endosome antigen (EEA) 1, GFP Rab5, GFP Rab11, GFP Rab8, transferrin (Tf), and Tf receptor (Tf-R) fused to mCherry (Tf-RmCherry). Tf-RmCherry was transferred between cancer cells by a contact-dependent but secretion-independent mechanism. Live cell imaging showed TNT formation preceding the transfer of Tf-RmCherry and involving the function of the small guanosine triphosphatase (GTPase) Rab8, which colocalized with Tf-RmCherry in the TNTs and was cotransferred to acceptor cells. Tf-RmCherry was transferred from cancer cells to fibroblasts, a noteworthy finding that suggests that this process occurs between tumor and stromal cells in vivo. We strengthened this hypothesis in a xenograft model of breast cancer using enhanced (e)GFP-expressing mice. Tf-RmCherry transferred from tumor to stromal cells and this process correlated with an increased opposite transfer of eGFP from stromal to tumor cells, together pointing toward complex intercellular communication at the tumor site.


Asunto(s)
Neoplasias de la Mama/metabolismo , Fibroblastos/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Transferrina/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Neoplasias de la Mama/genética , Fibroblastos/patología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Microscopía Confocal , Proteínas de Neoplasias/genética , Trasplante de Neoplasias , Transporte de Proteínas/genética , Receptores de Transferrina/genética , Células del Estroma/metabolismo , Células del Estroma/patología , Proteínas de Unión al GTP rab/genética
12.
Neuro Oncol ; 17(10): 1374-85, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25791837

RESUMEN

BACKGROUND: The key metabolic enzyme lactate dehydrogenase A (LDHA) is overexpressed in many cancers, and several preclinical studies have shown encouraging results of targeted inhibition. However, the mechanistic importance of LDHA in melanoma is largely unknown and hitherto unexplored in brain metastasis. METHODS: We investigated the spatial, temporal, and functional features of LDHA expression in melanoma brain metastasis across multiple in vitro assays, in a robust and predictive animal model employing MRI and PET imaging, and in a unique cohort of 80 operated patients. We further assessed the genomic and proteomic landscapes of LDHA in different cancers, particularly melanomas. RESULTS: LDHA expression was especially strong in early and small brain metastases in vivo and related to intratumoral hypoxia in late and large brain metastases in vivo and in patients. However, LDHA expression in human brain metastases was not associated with the number of tumors, BRAF(V600E) status, or survival. Moreover, LDHA depletion by small hairpin RNA interference did not affect cell proliferation or 3D tumorsphere growth in vitro or brain metastasis formation or survival in vivo. Integrated analyses of the genomic and proteomic landscapes of LDHA indicated that LDHA is present but not imperative for tumor progression within the CNS, or predictive of survival in melanoma patients. CONCLUSIONS: In a large patient cohort and in a robust animal model, we show that although LDHA expression varies biphasically during melanoma brain metastasis formation, tumor progression and survival seem to be functionally independent of LDHA.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundario , L-Lactato Deshidrogenasa/metabolismo , Melanoma/patología , Animales , Hipoxia de la Célula , Línea Celular Tumoral , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , L-Lactato Deshidrogenasa/genética , Lactato Deshidrogenasa 5 , Ratones , Análisis de Supervivencia
13.
J Transl Med ; 12: 278, 2014 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-25280402

RESUMEN

BACKGROUND: Although several studies suggest that stromal fibroblasts mediate treatment resistance in several cancer types, little is known about how tumor-associated astrocytes modulate the treatment response in brain tumors. Since traditionally used metabolic assays do not distinguish metabolic activity between stromal and tumor cells, and since 2-dimensional co-culture system does not recreate the formidable complexity of the microenvironment within 3-dimensional structures such as solid tumor tissue, we instead established a glioblastoma (GBM) cell-specific bioluminescent assay for direct measurements of tumor cell viability in the treatment of clinical relevant drugs. METHODS: Using lentiviral transfection, we established a panel of human GBM cell lines constitutively expressing a fusion transgene encoding luciferase and the enhanced green fluorescence protein (eGFP). We then initiated co-cultures with immortalized astrocytes, TNC-1, and the eGFP/Luc GBM cell lines. Next, we treated all eGFP/Luc GBM cell lines with Temozolomide (TMZ) or Doxorubicin, comparing co-cultures of glioblastoma (GBM) cells and TNC-1 astrocytes with mono-cultures of eGFP/Luc GBM cells. Cell viability was quantitated by measuring the luciferase expression. RESULTS: Titration experiments demonstrated that luciferase expression was proportional to the number of eGFP/Luc GBM cells, whereas it was not influenced by the number of TNC-1 cells present. Notably, the presence of TNC-1 astrocytes mediated significantly higher cell survival after TMZ treatment in the U251, C6, A172 cell lines as well as the in vivo propagated primary GBM tumor cell line (P3). Moreover, TNC-1 astrocytes mediated significantly higher survival after Doxorubicin treatment in the U251, and LN18 glioma cell lines. CONCLUSION: Glioma cell-specific bioluminescent assay is a reliable tool for assessment of cell viability in the brain tumor cell compartment following drug treatment. Moreover, we have applied this assay to demonstrate that astrocytes can modulate chemo sensitivity of GBM tumor cells. These effects varied both with the cell line and cytotoxic drug that were used, suggesting that several mechanisms may be involved.


Asunto(s)
Astrocitos/patología , Neoplasias Encefálicas/patología , Técnicas de Cocultivo/métodos , Resistencia a Antineoplásicos , Glioblastoma/patología , Luminiscencia , Modelos Biológicos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Compartimento Celular , Recuento de Células , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dacarbazina/análogos & derivados , Dacarbazina/farmacología , Dacarbazina/uso terapéutico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Humanos , Reproducibilidad de los Resultados , Esferoides Celulares/patología , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Temozolomida
14.
PLoS One ; 9(9): e108622, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25254960

RESUMEN

Understanding the biological function behind key proteins is of great concern in Atlantic salmon, both due to a high commercial importance and an interesting life history. Until recently, functional studies in salmonids appeared to be difficult. However, the recent discovery of targeted mutagenesis using the CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/CRISPR-associated) system enables performing functional studies in Atlantic salmon to a great extent. We used the CRISPR/Cas9 system to target two genes involved in pigmentation, tyrosinase (tyr) and solute carrier family 45, member 2 (slc45a2). Embryos were assayed for mutation rates at the 17 somite stage, where 40 and 22% of all injected embryos showed a high degree of mutation induction for slc45a2 and tyr, respectively. At hatching this mutation frequency was also visible for both targeted genes, displaying a graded phenotype ranging from complete lack of pigmentation to partial loss and normal pigmentation. CRISPRslc45a2/Cas9 injected embryos showing a complete lack of pigmentation or just a few spots of pigments also lacked wild type sequences when assaying more than 80 (slc45a2) sequence clones from whole embryos. This indicates that CRISPR/Cas9 can induce double-allelic knockout in the F0 generation. However, types and frequency of indels might affect the phenotype. Therefore, the variation of indels was assayed in the graded pigmentation phenotypes produced by CRISPR/Cas9-slc45a2. The results show a tendency for fewer types of indels formed in juveniles completely lacking pigmentation compared to juveniles displaying partial pigmentation. Another interesting observation was a high degree of the same indel type in different juveniles. This study shows for the first time successful use of the CRISPR/Cas9 technology in a marine cold water species. Targeted double-allelic mutations were obtained and, though the level of mosaicism has to be considered, we demonstrate that F0 fish can be used for functional studies in Atlantic salmon.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes , Marcación de Gen , Mutagénesis , Salmo salar/genética , Animales , Animales Modificados Genéticamente , Marcación de Gen/métodos , Tasa de Mutación , Fenotipo
15.
Int J Mol Sci ; 15(5): 8773-94, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24840574

RESUMEN

Malignant melanoma is the most lethal form of skin cancer, with a high propensity to metastasize to the brain. More than 60% of melanomas have the BRAFV600E mutation, which activates the mitogen-activated protein kinase (MAPK) pathway [1]. In addition, increased PI3K (phosphoinositide 3-kinase) pathway activity has been demonstrated, through the loss of activity of the tumor suppressor gene, PTEN [2]. Here, we treated two melanoma brain metastasis cell lines, H1_DL2, harboring a BRAFV600E mutation and PTEN loss, and H3, harboring WT (wild-type) BRAF and PTEN loss, with the MAPK (BRAF) inhibitor vemurafenib and the PI3K pathway associated mTOR inhibitor temsirolimus. Combined use of the drugs inhibited tumor cell growth and proliferation in vitro in H1_DL2 cells, compared to single drug treatment. Treatment was less effective in the H3 cells. Furthermore, a strong inhibitory effect on the viability of H1_DL2 cells, when grown as 3D multicellular spheroids, was seen. The treatment inhibited the expression of pERK1/2 and reduced the expression of pAKT and p-mTOR in H1_DL2 cells, confirming that the MAPK and PI3K pathways were inhibited after drug treatment. Microarray experiments followed by principal component analysis (PCA) mapping showed distinct gene clustering after treatment, and cell cycle checkpoint regulators were affected. Global gene analysis indicated that functions related to cell survival and invasion were influenced by combined treatment. In conclusion, we demonstrate for the first time that combined therapy with vemurafenib and temsirolimus is effective on melanoma brain metastasis cells in vitro. The presented results highlight the potential of combined treatment to overcome treatment resistance that may develop after vemurafenib treatment of melanomas.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundario , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Indoles/farmacología , Indoles/uso terapéutico , Melanoma/metabolismo , Melanoma/patología , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sirolimus/análogos & derivados , Sirolimus/farmacología , Sirolimus/uso terapéutico , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Vemurafenib
16.
J Control Release ; 172(3): 812-22, 2013 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-24161382

RESUMEN

Our goal was to develop strategies to quantify the accumulation of model therapeutics in small brain metastases using multimodal imaging, in order to enhance the potential for successful treatment. Human melanoma cells were injected into the left cardiac ventricle of immunodeficient mice. Bioluminescent, MR and PET imaging were applied to evaluate the limits of detection and potential for contrast agent extravasation in small brain metastases. A pharmacokinetic model was applied to estimate vascular permeability. Bioluminescent imaging after injecting d-luciferin (molecular weight (MW) 320 D) suggested that tumor cell extravasation had already occurred at week 1, which was confirmed by histology. 7T T1w MRI at week 4 was able to detect non-leaky 100 µm sized lesions and leaky tumors with diameters down to 200 µm after contrast injection at week 5. PET imaging showed that (18)F-FLT (MW 244 Da) accumulated in the brain at week 4. Gadolinium-based MRI tracers (MW 559 Da and 2.066 kDa) extravasated after 5 weeks (tumor diameter 600 µm), and the lower MW agent cleared more rapidly from the tumor (mean apparent permeabilities 2.27 × 10(-5)cm/s versus 1.12 × 10(-5)cm/s). PET imaging further demonstrated tumor permeability to (64)Cu-BSA (MW 65.55 kDa) at week 6 (tumor diameter 700 µm). In conclusion, high field T1w MRI without contrast may improve the detection limit of small brain metastases, allowing for earlier diagnosis of patients, although the smallest lesions detected with T1w MRI were permeable only to d-luciferin and the amphipathic small molecule (18)F-FLT. Different-sized MR and PET contrast agents demonstrated the gradual increase in leakiness of the blood tumor barrier during metastatic progression, which could guide clinicians in choosing tailored treatment strategies.


Asunto(s)
Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Encéfalo/patología , Melanoma/patología , Melanoma/secundario , Animales , Benzotiazoles , Medios de Contraste , Femenino , Gadolinio , Humanos , Luminiscencia , Imagen por Resonancia Magnética , Ratones , Ratones SCID , Imagen Multimodal , Imagen Óptica , Permeabilidad , Tomografía de Emisión de Positrones
17.
Oncotarget ; 4(9): 1527-46, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24127551

RESUMEN

Glioblastoma (GBM) is the most malignant brain tumor where patients' survival is only 14.6 months, despite multimodal therapy with debulking surgery, concurrent chemotherapy and radiotherapy. There is an urgent, unmet need for novel, effective therapeutic strategies for this devastating disease. Although several immunotherapies are under development for the treatment of GBM patients, the use of natural killer (NK) cells is still marginal despite this being a promising approach to treat cancer. In regard of our knowledge on the role of NG2/CSPG4 in promoting GBM aggressiveness we investigated the potential of an innovative immunotherapeutic strategy combining mAb9.2.27 against NG2/CSPG4 and NK cells in preclinical animal models of GBM. Multiple immune escape mechanisms maintain the tumor microenvironment in an anti-inflammatory state to promote tumor growth, however, the distinct roles of resident microglia versus recruited macrophages is not elucidated. We hypothesized that exploiting the cytokine release capabilities of activated (NK) cells to reverse the anti-inflammatory axis combined with mAb9.2.27 targeting the NG2/CSPG4 may favor tumor destruction by editing pro-GBM immune responses. Combination treatment with NK+mAb9.2.27 diminished tumor growth that was associated with reduced tumor proliferation, increased cellular apoptosis and prolonged survival compared to vehicle and monotherapy controls. The therapeutic efficacy was mediated by recruitment of CCR2low macrophages into the tumor microenvironment, increased ED1 and MHC class II expression on microglia that might render them competent for GBM antigen presentation, as well as elevated IFN-γ and TNF-α levels in the cerebrospinal fluid compared to controls. Depletion of systemic macrophages by liposome-encapsulated clodronate decreased the CCR2low macrophages recruited to the brain and abolished the beneficial outcomes. Moreover, mAb9.2.27 reversed tumor-promoting effects of patient-derived tumor-associated macrophage/microglia(TAM) ex vivo.Taken together, these findings indicate thatNK+mAb9.2.27 treatment may be an amenable therapeutic strategy to treat NG2/CSPG4 expressing GBMs. We provide a novel conceptual approach of combination immunotherapy for glioblastoma. The results traverse beyond the elucidation of NG2/CSPG4 as a therapeutic target, but demonstrate a proof of concept that this antibody may hold potential for the treatment of GBM by activation of tumor infiltrated microglia/macrophages.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Células Asesinas Naturales/inmunología , Proteoglicanos/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/inmunología , Antígenos/inmunología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Procesos de Crecimiento Celular/inmunología , Glioblastoma/inmunología , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Inmunoterapia Adoptiva/métodos , Células Asesinas Naturales/patología , Persona de Mediana Edad , Proteoglicanos/inmunología , Ratas , Análisis de Supervivencia , Microambiente Tumoral
18.
Cancer Res ; 73(8): 2445-56, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23423977

RESUMEN

Biologic and therapeutic advances in melanoma brain metastasis are hampered by the paucity of reproducible and predictive animal models. In this work, we developed a robust model of brain metastasis that empowers quantitative tracking of cellular dissemination and tumor progression. Human melanoma cells labeled with superparamagnetic iron oxide nanoparticles (SPION) were injected into the left cardiac ventricle of mice and visualized by MRI. We showed that SPION exposure did not affect viability, growth, or migration in multiple cell lines across several in vitro assays. Moreover, labeling did not impose changes in cell-cycle distribution or apoptosis. In vivo, several SPION-positive cell lines displayed similar cerebral imaging and histologic features. MRI-based automated quantification of labeled cells in the brain showed a sigmoid association between metastasis frequency and doses of inoculated cells. Validation of this fully automated quantification showed a strong correlation with manual signal registration (r(2) = 0.921, P < 0.001) and incidence of brain metastases (r(2) = 0.708, P < 0.001). Metastasis formation resembled the pattern seen in humans and was unaffected by SPION labeling (histology; tumor count, P = 0.686; survival, P = 0.547). In summary, we present here a highly reproducible animal model that can improve the predictive value of mechanistic and therapeutic studies of melanoma brain metastasis.


Asunto(s)
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/secundario , Rastreo Celular , Nanopartículas de Magnetita , Melanoma/diagnóstico , Melanoma/patología , Animales , Apoptosis , Transporte Biológico , Neoplasias Encefálicas/mortalidad , Ciclo Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Supervivencia Celular , Citoplasma/metabolismo , Modelos Animales de Enfermedad , Femenino , Compuestos Férricos/química , Humanos , Imagen por Resonancia Magnética , Nanopartículas de Magnetita/química , Melanoma/mortalidad , Ratones , Coloración y Etiquetado , Factores de Tiempo , Carga Tumoral , Cicatrización de Heridas
19.
Acta Neuropathol ; 125(5): 683-98, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23429996

RESUMEN

Angiogenesis is regarded as a hallmark of cancer progression and it has been postulated that solid tumor growth depends on angiogenesis. At present, however, it is clear that tumor cell invasion can occur without angiogenesis, a phenomenon that is particularly evident by the infiltrative growth of malignant brain tumors, such as glioblastomas (GBMs). In these tumors, amplification or overexpression of wild-type (wt) or truncated and constitutively activated epidermal growth factor receptor (EGFR) are regarded as important events in GBM development, where the complex downstream signaling events have been implicated in tumor cell invasion, angiogenesis and proliferation. Here, we show that amplification and in particular activation of wild-type EGFR represents an underlying mechanism for non-angiogenic, invasive tumor growth. Using a clinically relevant human GBM xenograft model, we show that tumor cells with EGFR gene amplification and activation diffusely infiltrate normal brain tissue independent of angiogenesis and that transient inhibition of EGFR activity by cetuximab inhibits the invasive tumor growth. Moreover, stable, long-term expression of a dominant-negative EGFR leads to a mesenchymal to epithelial-like transition and induction of angiogenic tumor growth. Analysis of human GBM biopsies confirmed that EGFR activation correlated with invasive/non-angiogenic tumor growth. In conclusion, our results indicate that activation of wild-type EGFR promotes invasion and glioblastoma development independent of angiogenesis, whereas loss of its activity results in angiogenic tumor growth.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Genes erbB-1/genética , Glioblastoma/genética , Glioblastoma/patología , Activación Transcripcional , Anticuerpos Monoclonales Humanizados/farmacología , Antineoplásicos/farmacología , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Cetuximab , Receptores ErbB/efectos de los fármacos , Receptores ErbB/genética , Amplificación de Genes , Humanos , Invasividad Neoplásica/genética , Neovascularización Patológica , Ensayos Antitumor por Modelo de Xenoinjerto
20.
PLoS One ; 7(7): e41688, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22844515

RESUMEN

Expression of activity-regulated cytoskeleton associated protein (Arc) is crucial for diverse types of experience-dependent synaptic plasticity and long-term memory in mammals. However, the mechanisms governing Arc-specific translation are little understood. Here, we asked whether Arc translation is regulated by microRNAs. Bioinformatic analysis predicted numerous candidate miRNA binding sites within the Arc 3'-untranslated region (UTR). Transfection of the corresponding microRNAs in human embryonic kidney cells inhibited expression of an Arc 3'UTR luciferase reporter from between 10 to 70% across 16 microRNAs tested. Point mutation and deletion of the microRNA-binding seed-region for miR-34a, miR-326, and miR-19a partially or fully rescued reporter expression. In addition, expression of specific microRNA pairs synergistically modulated Arc reporter expression. In primary rat hippocampal neuronal cultures, ectopic expression of miR-34a, miR-193a, or miR-326, downregulated endogenous Arc protein expression in response to BDNF treatment. Conversely, treatment of neurons with cell-penetrating, peptide nucleic acid (PNA) inhibitors of miR-326 enhanced Arc mRNA expression. BDNF dramatically upregulated neuronal expression of Arc mRNA and miR-132, a known BDNF-induced miRNA, without affecting expression of Arc-targeting miRNAs. Developmentally, miR-132 was upregulated at day 10 in vitro whereas Arc-targeting miRNAs were downregulated. In the adult brain, LTP induction in the dentate gyrus triggered massive upregulation of Arc and upregulation of miR-132 without affecting levels of mature Arc-targeting miRNAs. Turning to examine miRNA localization, qPCR analysis of dentate gyrus synaptoneurosome and total lysates fractions demonstrated synaptic enrichment relative to small nucleolar RNA. In conclusion, we find that Arc is regulated by multiple miRNAs and modulated by specific miRNA pairs in vitro. Furthermore, we show that, in contrast to miR-132, steady state levels of Arc-targeting miRNAs do not change in response to activity-dependent expression of Arc in hippocampal neurons in vitro or during LTP in vivo.


Asunto(s)
Proteínas del Citoesqueleto/genética , MicroARNs/genética , MicroARNs/metabolismo , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal/genética , Sinapsis/metabolismo , Regiones no Traducidas 3'/genética , Animales , Secuencia de Bases , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas del Citoesqueleto/metabolismo , Dendritas/metabolismo , Células HEK293 , Hipocampo/citología , Hipocampo/fisiología , Humanos , Espacio Intracelular/metabolismo , Potenciación a Largo Plazo/genética , Masculino , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Oligonucleótidos Antisentido/genética , Mutación Puntual , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Eliminación de Secuencia , Transcriptoma , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...