Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEMS Microbiol Lett ; 3702023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37480240

RESUMEN

The Genome Taxonomy Database (GTDB) is a taxonomic framework that defines prokaryotic taxa as monophyletic groups in concatenated protein reference trees according to systematic criteria. This has resulted in a substantial number of changes to existing classifications (https://gtdb.ecogenomic.org). In the case of union of taxa, GTDB names were applied based on the priority of publication. The division of taxa or change in rank led to the formation of new Latin names above the rank of genus that were only made publicly available via the GTDB website without associated published taxonomic descriptions. This has sometimes led to confusion in the literature and databases. A number of the provisional GTDB names were later published in other studies, while many still lack authorships. To reduce further confusion, here we propose names and descriptions for 329 GTDB-defined prokaryotic taxa, 223 of which are suitable for validation under the International Code of Nomenclature of Prokaryotes (ICNP) and 49 under the Code of Nomenclature of Prokaryotes described from Sequence Data (SeqCode). For the latter, we designated 23 genomes as type material. An additional 57 taxa that do not currently satisfy the validation criteria of either code are proposed as Candidatus.


Asunto(s)
Autoria , Células Procariotas , Bases de Datos Factuales
2.
Front Microbiol ; 14: 1127779, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065131

RESUMEN

Here, we report a metabarcoding (ITS2) study to define the common core fungal microbiome (mycobiome) of healthy Musa spp. (bananas and plantains). To identify a list of 21 core fungal taxa, we first characterised the effects of edaphic conditions and host genotype - two factors that are likely to differ between farms - on the diversity of fungal communities in bulk soil and seven plant compartments. This experiment facilitated shortlisting of core 'candidates', which were then elevated to full core status if also found to frequent a wide-range of field-grown Musa spp. and exhibit hub-like characteristics in network analyses. Subsequently, we conducted a meta-analysis of eleven publicly available datasets of Musa spp. associated fungi demonstrating that the core fungi identified in our study have close relatives in other countries. The diversity and composition of mycobiomes differed between plant compartments and soils, but not genotypes. The core mycobiome included Fusarium oxysporum and its relatives, which dominated all plant compartments, as well as members of the Sordariomycetes, Dothideomycetes, and Mortierellomycota. Our study provides a robust list of common core fungal taxa for Musa spp. Further studies may consider how changes in the frequencies and activities of these taxa influence host fitness and whether they can be managed to improve banana production.

3.
Environ Microbiome ; 17(1): 46, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36076285

RESUMEN

BACKGROUND: Bananas (Musa spp.) are a globally significant crop and are severely afflicted by diseases for which there are no effective chemical controls. Banana microbiomes may provide novel solutions to these constraints but are difficult to manage due to their high diversity and variability between locations. Hence 'common core' taxa, which are a subset of the microbiome that frequent all, or most, individuals of a host species, represent logical targets for the development of microbiome management approaches. Here, we first performed a pot experiment to characterise the effects of two factors that are likely to differ between farms (viz. edaphic conditions and host genotype) on bacterial diversity in bulk soil and seven plant compartments. From this experiment, we created shortlisted core 'candidates' that were then refined using a survey of 52 field-grown Musa spp. We confirmed the importance of the core through network analysis and by comparing the sequences of our core taxa with those reported in 22 previous studies. RESULTS: Diversity was found to differ between plant compartments and soils, but not genotypes. Therefore, we identified populations that were frequent across most plants irrespective of the soil in which they were grown. This led to the selection of 36 'common core' bacteria, that represented 65-95% of the dominant taxa in field-grown plants and were identified as highly interconnected 'hubs' using network analysis - a characteristic shown to be indicative of microbes that influence host fitness in studies of other plants. Lastly, we demonstrated that the core taxa are closely related to banana-associated bacteria observed on five other continents. CONCLUSIONS: Our study provides a robust list of common core bacterial taxa for Musa spp. Further research may now focus on how changes in the frequencies and activities of these most persistent taxa influence host fitness. Notably, for several of our core taxa, highly similar populations have already been isolated in previous studies and may be amenable to such experimentation. This contribution should help to accelerate the development of effective Musa spp. microbiome management practices.

4.
Sci Total Environ ; 671: 140-148, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-30928743

RESUMEN

Graphene oxide (GO) is an oxidized form of graphene that is relatively cheap and easy to produce. This has heralded its widespread use in a range of industries, with its likelihood of release into the environment increasing accordingly. In pure culture, GO has been shown to influence bacteria and fungi, but its effects on environmental microbial communities remain poorly characterized, despite the important ecosystem services that these organisms underpin. Here, we characterized the effects of GO and graphite, over time (7, 14 and 30 days) and at three concentrations (1 ng, 1 µg and 1 mg kg dry soil-1), on soil bacterial and fungal diversity using 16S rRNA and ITS2 gene amplicon sequencing. Graphite was included as a reference material as it is widely distributed in the environment. Neither GO or graphite had significant effects on the alpha diversity of microbial communities. The composition of bacterial and fungal communities, however, was significantly influenced by both materials at all doses. With the exception of the lowest GO dose on day 14, these effects were apparent for all treatments over the course of the experiment. Nonetheless, the effects of GO and graphite were of similar magnitude, albeit with some differences in the taxa affected.


Asunto(s)
Bacterias/efectos de los fármacos , Hongos/efectos de los fármacos , Grafito/efectos adversos , Microbiota/efectos de los fármacos , Contaminantes del Suelo/efectos adversos , ADN Bacteriano/análisis , ADN de Hongos/análisis , ADN Espaciador Ribosómico/análisis , Relación Dosis-Respuesta a Droga , ARN Bacteriano/análisis , ARN de Hongos/análisis , ARN Ribosómico 16S/análisis , Microbiología del Suelo
5.
Nat Biotechnol ; 36(10): 996-1004, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30148503

RESUMEN

Taxonomy is an organizing principle of biology and is ideally based on evolutionary relationships among organisms. Development of a robust bacterial taxonomy has been hindered by an inability to obtain most bacteria in pure culture and, to a lesser extent, by the historical use of phenotypes to guide classification. Culture-independent sequencing technologies have matured sufficiently that a comprehensive genome-based taxonomy is now possible. We used a concatenated protein phylogeny as the basis for a bacterial taxonomy that conservatively removes polyphyletic groups and normalizes taxonomic ranks on the basis of relative evolutionary divergence. Under this approach, 58% of the 94,759 genomes comprising the Genome Taxonomy Database had changes to their existing taxonomy. This result includes the description of 99 phyla, including six major monophyletic units from the subdivision of the Proteobacteria, and amalgamation of the Candidate Phyla Radiation into a single phylum. Our taxonomy should enable improved classification of uncultured bacteria and provide a sound basis for ecological and evolutionary studies.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Genoma Bacteriano , Filogenia , Bases de Datos Genéticas , Genómica , Programas Informáticos
6.
PeerJ ; 4: e2486, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27688978

RESUMEN

High-throughput sequencing libraries are typically limited by the requirement for nanograms to micrograms of input DNA. This bottleneck impedes the microscale analysis of ecosystems and the exploration of low biomass samples. Current methods for amplifying environmental DNA to bypass this bottleneck introduce considerable bias into metagenomic profiles. Here we describe and validate a simple modification of the Illumina Nextera XT DNA library preparation kit which allows creation of shotgun libraries from sub-nanogram amounts of input DNA. Community composition was reproducible down to 100 fg of input DNA based on analysis of a mock community comprising 54 phylogenetically diverse Bacteria and Archaea. The main technical issues with the low input libraries were a greater potential for contamination, limited DNA complexity which has a direct effect on assembly and binning, and an associated higher percentage of read duplicates. We recommend a lower limit of 1 pg (∼100-1,000 microbial cells) to ensure community composition fidelity, and the inclusion of negative controls to identify reagent-specific contaminants. Applying the approach to marine surface water, pronounced differences were observed between bacterial community profiles of microliter volume samples, which we attribute to biological variation. This result is consistent with expected microscale patchiness in marine communities. We thus envision that our benchmarked, slightly modified low input DNA protocol will be beneficial for microscale and low biomass metagenomics.

7.
Stand Genomic Sci ; 11(1): 60, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27602182

RESUMEN

Bacillus amyloliquefaciens H57 is a bacterium isolated from lucerne for its ability to prevent feed spoilage. Further interest developed when ruminants fed with H57-inoculated hay showed increased weight gain and nitrogen retention relative to controls, suggesting a probiotic effect. The near complete genome of H57 is ~3.96 Mb comprising 16 contigs. Within the genome there are 3,836 protein coding genes, an estimated sixteen rRNA genes and 69 tRNA genes. H57 has the potential to synthesise four different lipopeptides and four polyketide compounds, which are known antimicrobials. This antimicrobial capacity may facilitate the observed probiotic effect.

8.
Artículo en Inglés | MEDLINE | ID: mdl-26988968

RESUMEN

Reconstructing the complete evolutionary history of extant life on our planet will be one of the most fundamental accomplishments of scientific endeavor, akin to the completion of the periodic table, which revolutionized chemistry. The road to this goal is via comparative genomics because genomes are our most comprehensive and objective evolutionary documents. The genomes of plant and animal species have been systematically targeted over the past decade to provide coverage of the tree of life. However, multicellular organisms only emerged in the last 550 million years of more than three billion years of biological evolution and thus comprise a small fraction of total biological diversity. The bulk of biodiversity, both past and present, is microbial. We have only scratched the surface in our understanding of the microbial world, as most microorganisms cannot be readily grown in the laboratory and remain unknown to science. Ground-breaking, culture-independent molecular techniques developed over the past 30 years have opened the door to this so-called microbial dark matter with an accelerating momentum driven by exponential increases in sequencing capacity. We are on the verge of obtaining representative genomes across all life for the first time. However, historical use of morphology, biochemical properties, behavioral traits, and single-marker genes to infer organismal relationships mean that the existing highly incomplete tree is riddled with taxonomic errors. Concerted efforts are now needed to synthesize and integrate the burgeoning genomic data resources into a coherent universal tree of life and genome-based taxonomy.


Asunto(s)
Biodiversidad , Clasificación , Genómica , Animales , Archaea/genética , Evolución Biológica , Genoma , Filogenia , ARN Ribosómico 16S/genética
9.
Microbiome ; 2: 11, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24708850

RESUMEN

BACKGROUND: Culture-independent molecular surveys targeting conserved marker genes, most notably 16S rRNA, to assess microbial diversity remain semi-quantitative due to variations in the number of gene copies between species. RESULTS: Based on 2,900 sequenced reference genomes, we show that 16S rRNA gene copy number (GCN) is strongly linked to microbial phylogenetic taxonomy, potentially under-representing Archaea in amplicon microbial profiles. Using this relationship, we inferred the GCN of all bacterial and archaeal lineages in the Greengenes database within a phylogenetic framework. We created CopyRighter, new software which uses these estimates to correct 16S rRNA amplicon microbial profiles and associated quantitative (q)PCR total abundance. CopyRighter parses microbial profiles and, because GCN estimates are pre-computed for all taxa in the reference taxonomy, rapidly corrects GCN bias. Software validation with in silico and in vitro mock communities indicated that GCN correction results in more accurate estimates of microbial relative abundance and improves the agreement between metagenomic and amplicon profiles. Analyses of human-associated and anaerobic digester microbiomes illustrate that correction makes tangible changes to estimates of qPCR total abundance, α and ß diversity, and can significantly change biological interpretation. For example, human gut microbiomes from twins were reclassified into three rather than two enterotypes after GCN correction. CONCLUSIONS: The CopyRighter bioinformatic tools permits rapid correction of GCN in microbial surveys, resulting in improved estimates of microbial abundance, α and ß diversity.

10.
BMC Bioinformatics ; 15: 36, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24484385

RESUMEN

BACKGROUND: Several small open reading frames located within the 5' untranslated regions of mRNAs have recently been shown to be translated. In humans, about 50% of mRNAs contain at least one upstream open reading frame representing a large resource of coding potential. We propose that some upstream open reading frames encode peptides that are functional and contribute to proteome complexity in humans and other organisms. We use the term uPEPs to describe peptides encoded by upstream open reading frames. RESULTS: We have developed an online tool, termed uPEPperoni, to facilitate the identification of putative bioactive peptides. uPEPperoni detects conserved upstream open reading frames in eukaryotic transcripts by comparing query nucleotide sequences against mRNA sequences within the NCBI RefSeq database. The algorithm first locates the main coding sequence and then searches for open reading frames 5' to the main start codon which are subsequently analysed for conservation. uPEPperoni also determines the substitution frequency for both the upstream open reading frames and the main coding sequence. In addition, the uPEPperoni tool produces sequence identity heatmaps which allow rapid visual inspection of conserved regions in paired mRNAs. CONCLUSIONS: uPEPperoni features user-nominated settings including, nucleotide match/mismatch, gap penalties, Ka/Ks ratios and output mode. The heatmap output shows levels of identity between any two sequences and provides easy recognition of conserved regions. Furthermore, this web tool allows comparison of evolutionary pressures acting on the upstream open reading frame against other regions of the mRNA. Additionally, the heatmap web applet can also be used to visualise the degree of conservation in any pair of sequences. uPEPperoni is freely available on an interactive web server at http://upep-scmb.biosci.uq.edu.au.


Asunto(s)
Regiones no Traducidas 5'/genética , Biología Computacional/métodos , Sistemas de Lectura Abierta/genética , ARN Mensajero/genética , Análisis de Secuencia de ARN/métodos , Secuencia de Aminoácidos , Animales , Análisis por Conglomerados , Codón Iniciador , Secuencia Conservada , Humanos , Internet , Ratones , Datos de Secuencia Molecular , ARN Mensajero/metabolismo , Ratas , Alineación de Secuencia , Programas Informáticos
11.
Nat Biotechnol ; 31(6): 533-8, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23707974

RESUMEN

Reference genomes are required to understand the diverse roles of microorganisms in ecology, evolution, human and animal health, but most species remain uncultured. Here we present a sequence composition-independent approach to recover high-quality microbial genomes from deeply sequenced metagenomes. Multiple metagenomes of the same community, which differ in relative population abundances, were used to assemble 31 bacterial genomes, including rare (<1% relative abundance) species, from an activated sludge bioreactor. Twelve genomes were assembled into complete or near-complete chromosomes. Four belong to the candidate bacterial phylum TM7 and represent the most complete genomes for this phylum to date (relative abundances, 0.06-1.58%). Reanalysis of published metagenomes reveals that differential coverage binning facilitates recovery of more complete and higher fidelity genome bins than other currently used methods, which are primarily based on sequence composition. This approach will be an important addition to the standard metagenome toolbox and greatly improve access to genomes of uncultured microorganisms.


Asunto(s)
Bacterias/clasificación , Bacterias/genética , Genoma Bacteriano , Metagenoma , Animales , Secuencia de Bases , Humanos , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
12.
J Mol Evol ; 75(5-6): 214-28, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23179353

RESUMEN

Alternative RNA splicing in multicellular organisms is regulated by a large group of proteins of mainly unknown origin. To predict the functions of these proteins, classification of their domains at the sequence and structural level is necessary. We have focused on four groups of splicing regulators, the heterogeneous nuclear ribonucleoprotein (hnRNP), serine-arginine (SR), embryonic lethal, abnormal vision (ELAV)-like, and CUG-BP and ETR-like factor (CELF) proteins, that show increasing diversity among metazoa. Sequence and phylogenetic analyses were used to obtain a broader understanding of their evolutionary relationships. Surprisingly, when we characterised sequence similarities across full-length sequences and conserved domains of ten metazoan species, we found some hnRNPs were more closely related to SR, ELAV-like and CELF proteins than to other hnRNPs. Phylogenetic analyses and the distribution of the RRM domains suggest that these proteins diversified before the last common ancestor of the metazoans studied here through domain acquisition and duplication to create genes of mixed evolutionary origin. We propose that these proteins were derived independently rather than through the expansion of a single protein family. Our results highlight inconsistencies in the current classification system for these regulators, which does not adequately reflect their evolutionary relationships, and suggests that a domain-based classification scheme may have more utility.


Asunto(s)
Eucariontes/genética , Evolución Molecular , Empalme del ARN , Proteínas de Unión al ARN/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Proteína delta de Unión al Potenciador CCAAT/química , Proteína delta de Unión al Potenciador CCAAT/genética , Análisis por Conglomerados , Biología Computacional , Secuencia de Consenso , Proteínas ELAV/química , Proteínas ELAV/genética , Ribonucleoproteínas Nucleares Heterogéneas/genética , Humanos , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Filogenia , Alineación de Secuencia , Factores de Empalme Serina-Arginina
13.
Theor Appl Genet ; 124(3): 423-32, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22001910

RESUMEN

Complex Triticeae genomes pose a challenge to genome sequencing efforts due to their size and repetitive nature. Genome sequencing can reveal details of conservation and rearrangements between related genomes. We have applied Illumina second generation sequencing technology to sequence and assemble the low copy and unique regions of Triticum aestivum chromosome arm 7BS, followed by the construction of a syntenic build based on gene order in Brachypodium. We have delimited the position of a previously reported translocation between 7BS and 4AL with a resolution of one or a few genes and report approximately 13% genes from 7BS having been translocated to 4AL. An additional 13 genes are found on 7BS which appear to have originated from 4AL. The gene content of the 7DS and 7BS syntenic builds indicate a total of ~77,000 genes in wheat. Within wheat syntenic regions, 7BS and 7DS share 740 genes and a common gene conservation rate of ~39% of the genes from the corresponding regions in Brachypodium, as well as a common rate of colinearity with Brachypodium of ~60%. Comparison of wheat homoeologues revealed ~84% of genes previously identified in 7DS have a homoeologue on 7BS or 4AL. The conservation rates we have identified among wheat homoeologues and with Brachypodium provide a benchmark of homoeologous gene conservation levels for future comparative genomic analysis. The syntenic build of 7BS is publicly available at http://www.wheatgenome.info.


Asunto(s)
Cromosomas de las Plantas/genética , Sintenía/genética , Translocación Genética/genética , Triticum/genética , Brachypodium/genética , Mapeo Cromosómico , Orden Génico , Genética de Población , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN , Especificidad de la Especie
14.
Plant Biotechnol J ; 9(7): 768-75, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21356002

RESUMEN

The genome of bread wheat (Triticum aestivum) is predicted to be greater than 16 Gbp in size and consist predominantly of repetitive elements, making the sequencing and assembly of this genome a major challenge. We have reduced genome sequence complexity by isolating chromosome arm 7DS and applied second-generation technology and appropriate algorithmic analysis to sequence and assemble low copy and genic regions of this chromosome arm. The assembly represents approximately 40% of the chromosome arm and all known 7DS genes. Comparison of the 7DS assembly with the sequenced genomes of rice (Oryza sativa) and Brachypodium distachyon identified large regions of conservation. The syntenic relationship between wheat, B. distachyon and O. sativa, along with available genetic mapping data, has been used to produce an annotated draft 7DS syntenic build, which is publicly available at http://www.wheatgenome.info. Our results suggest that the sequencing of isolated chromosome arms can provide valuable information of the gene content of wheat and is a step towards whole-genome sequencing and variation discovery in this important crop.


Asunto(s)
Genoma de Planta/genética , Mapeo Físico de Cromosoma , Sintenía/genética , Triticum/genética , Algoritmos , Brachypodium/genética , Cromosomas de las Plantas/genética , ADN de Plantas/química , ADN de Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Meristema/genética , Anotación de Secuencia Molecular , Oryza/genética , Plantones/genética , Análisis de Secuencia de ADN
15.
RNA ; 16(9): 1760-8, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20651029

RESUMEN

The heterogeneous nuclear ribonucleoproteins (hnRNPs) A/B are a family of RNA-binding proteins that participate in various aspects of nucleic acid metabolism, including mRNA trafficking, telomere maintenance, and splicing. They are both regulators and targets of alternative splicing, and the patterns of alternative splicing of their transcripts have diverged between paralogs and between orthologs in different species. Surprisingly, the extent of this splicing variation and its implications for post-transcriptional regulation have remained largely unexplored. Here, we conducted a detailed analysis of hnRNP A/B sequences and expression patterns across six vertebrates. Alternative exons emerged via the introduction of new splice sites, changes in the strengths of existing splice sites, and the accumulation of auxiliary splicing regulatory motifs. Observed isoform expression patterns could be attributed to the frequency and strength of cis-elements. We found a trend toward increased splicing variation in mammals and identified novel alternatively spliced isoforms in human and chicken. Pulldown and translational assays demonstrated that the inclusion of alternative exons altered the affinity of hnRNP A/B proteins for their cognate nucleic acids and modified protein expression levels. As the hnRNPs A/B regulate several key steps in mRNA processing, the involvement of diverse hnRNP isoforms in multiple cellular contexts and species implies concomitant differences in the transcriptional output of these systems. We conclude that the emergence of alternative splicing in the hnRNPs A/B has contributed to the diversification of their roles in the regulation of alternative splicing and has thus added an unexpected layer of regulatory complexity to transcription in vertebrates.


Asunto(s)
Empalme Alternativo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Animales , Evolución Molecular , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Humanos , Ratones , Sitios de Empalme de ARN , ARN Mensajero/metabolismo , Ratas , Secuencias Reguladoras de Ácido Ribonucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...