Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 28(5): 1870-1883, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34927360

RESUMEN

Droughts increasingly threaten the world's forests and their potential to mitigate climate change. In 2018-2019, Central European forests were hit by two consecutive hotter drought years, an unprecedented phenomenon that is likely to occur more frequently with climate change. Here, we examine tree growth and physiological stress responses (increase in carbon isotope composition; Δδ13 C) to this consecutive drought based on tree rings of dominant tree species in a Central European floodplain forest. Tree growth was not reduced for most species in 2018, indicating that water supply in floodplain forests can partly buffer meteorological water deficits. Drought stress responses in 2018 were comparable to former single drought years but the hotter drought in 2018 induced drought legacies in tree growth while former droughts did not. We observed strong decreases in tree growth and increases in Δδ13 C across all tree species in 2019, which are likely driven by the cumulative stress both consecutive hotter droughts exerted. Our results show that consecutive hotter droughts pose a novel threat to forests under climate change, even in forest ecosystems with comparably high levels of water supply.


Asunto(s)
Sequías , Ecosistema , Isótopos de Carbono , Cambio Climático , Bosques
2.
Sci Rep ; 11(1): 5149, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664306

RESUMEN

Climate change is expected to pose major direct and indirect threats to groundwater-dependent forest ecosystems. Forests that concurrently experience increased rates of water extraction may face unprecedented exposure to droughts. Here, we examined differences in stem growth and xylem hydraulic architecture of 216 oak trees from sites with contrasting groundwater availability, including sites where groundwater extraction has led to reduced water availability for trees over several decades. We expected reduced growth and xylem hydraulic capacity for trees at groundwater extraction sites both under normal and unfavourable growing conditions. Compared to sites without extraction, trees at sites with groundwater extraction showed reduced growth and hydraulic conductivity both during periods of moderate and extremely low soil water availability. Trees of low vigour, which were more frequent at sites with groundwater extraction, were not able to recover growth and hydraulic capacity following drought, pointing to prolonged drought effects. Long-term water deficit resulting in reduced CO2 assimilation and hydraulic capacity after drought are very likely responsible for observed reductions in tree vitality at extraction sites. Our results demonstrate that groundwater access maintains tree function and resilience to drought and is therefore important for tree health in the context of climate change.

3.
Sci Rep ; 10(1): 21832, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33311544

RESUMEN

To satisfy the increasing demand for wood in central Europe during medieval times, a new system of forest management was developed, one far superior to simple coppicing. The adoption of a sophisticated, Coppice-with-Standards (CWS) management practice created a two-storey forest structure that could provide fuelwood as well as construction timber. Here we present a dendrochronological study of actively managed CWS forests in northern Bavaria to detect the radial growth response to cyclical understorey harvesting in overstorey oaks (Quercus sp.), so-called standards. All modern standards exhibit rapid growth releases every circa 30 years, most likely caused by regular understorey management. We further analyse tree-ring width patterns in 2120 oak timbers from historical buildings and archaeological excavations in southern Germany and north-eastern France, dating between 300 and 2015 CE, and succeeded in identifying CWS growth patterns throughout the medieval period. Several potential CWS standards even date to the first millennium CE, suggesting CWS management has been in practice long before its first mention in historical documents. Our dendrochronological approach should be expanded routinely to indentify the signature of past forest management practices in archaeological and historical oak wood.

4.
Sci Rep ; 10(1): 16284, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004966

RESUMEN

Hydroclimate, the interplay of moisture supply and evaporative demand, is essential for ecological and agricultural systems. The understanding of long-term hydroclimate changes is, however, limited because instrumental measurements are inadequate in length to capture the full range of precipitation and temperature variability and by the uneven distribution of high-resolution proxy records in space and time. Here, we present a tree-ring-based reconstruction of interannual to centennial-scale groundwater level (GWL) fluctuations for south-western Germany and north-eastern France. Continuously covering the period of 265-2017 CE, our new record from the Upper Rhine Valley shows that the warm periods during late Roman, medieval and recent times were characterized by higher GWLs. Lower GWLs were found during the cold periods of the Late Antique Little Ice Age (LALIA; 536 to ~ 660 CE) and the Little Ice Age (LIA; between medieval and recent warming). The reconstructed GWL fluctuations are in agreement with multidecadal North Atlantic climate variability derived from independent proxies. Warm and wet hydroclimate conditions are found during warm states of the Atlantic Ocean and positive phases of the North Atlantic Oscillation on decadal scales.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...