Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IUCrJ ; 9(Pt 5): 705-712, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36071796

RESUMEN

Structural modelling of octahedral tilts in perovskites is typically carried out using the symmetry constraints of the resulting space group. In most cases, this introduces more degrees of freedom than those strictly necessary to describe only the octahedral tilts. It can therefore be a challenge to disentangle the octahedral tilts from other structural distortions such as cation displacements and octahedral distortions. This paper reports the development of constraints for modelling pure octahedral tilts and implementation of the constraints in diffpy-CMI, a powerful package to analyse pair distribution function (PDF) data. The model in the program allows features in the PDF that come from rigid tilts to be separated from non-rigid relaxations, providing an intuitive picture of the tilting. The model has many fewer refinable variables than the unconstrained space group fits and provides robust and stable refinements of the tilt components. It further demonstrates the use of the model on the canonical tilted perovskite CaTiO3 which has the known Glazer tilt system α+ß-ß-. The Glazer model fits comparably to the corresponding space-group model Pnma below r = 14 Šand becomes progressively worse than the space-group model at higher r due to non-rigid distortions in the real material.

2.
Nanoscale Horiz ; 6(6): 474-481, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33960354

RESUMEN

The triangular lattice with Ising magnetic moments is an archetypical example of geometric frustration. In the case of dipolar-coupled out-of-plane moments, the geometric frustration results in a disordered classical spin-liquid state at higher temperatures while the system is predicted to transition to an anti-ferromagnetic stripe ground state at low temperatures. In this work we fabricate artificial triangular Ising spin systems without and with uniaxial in-plane compression to tune the nature and temperature of the correlations. We probe the energy scale and nature of magnetic correlations by grazing-incidence small-angle neutron scattering. In particular, we apply a newly-developed empirical structure-factor model to describe the measured short-range correlated spin-liquid state, and find good agreement with theoretical predictions. We demonstrate that grazing-incidence neutron scattering on our high-quality samples, in conjunction with detailed modeling of the scattering using the Distorted Wave Born Approximation, can be used to experimentally quantify the spin-liquid-like correlations in highly-frustrated artificial spin systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...