Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 4683, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050293

RESUMEN

Global patterns of regional (gamma) plant diversity are relatively well known, but whether these patterns hold for local communities, and the dependence on spatial grain, remain controversial. Using data on 170,272 georeferenced local plant assemblages, we created global maps of alpha diversity (local species richness) for vascular plants at three different spatial grains, for forests and non-forests. We show that alpha diversity is consistently high across grains in some regions (for example, Andean-Amazonian foothills), but regional 'scaling anomalies' (deviations from the positive correlation) exist elsewhere, particularly in Eurasian temperate forests with disproportionally higher fine-grained richness and many African tropical forests with disproportionally higher coarse-grained richness. The influence of different climatic, topographic and biogeographical variables on alpha diversity also varies across grains. Our multi-grain maps return a nuanced understanding of vascular plant biodiversity patterns that complements classic maps of biodiversity hotspots and will improve predictions of global change effects on biodiversity.


Asunto(s)
Biodiversidad , Tracheophyta , Ecosistema , Plantas
2.
Planta ; 256(1): 18, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35748952

RESUMEN

MAIN CONCLUSION: Genome size of alpine plants is not related to their resistance against frost and heat. Genome size is a variable trait in angiosperms, and it was suggested that large genome size represents a constraint in stressful environments. We measured genome size and resistance to frost and heat in 89 species of plants from tropical and temperate alpine habitats. Genome size of the species, ranging from 0.49 pg to 25.8 pg across the entire dataset, was not related to either frost or heat resistance in either group of plants. Genome size does not predict resistance to extreme temperatures in alpine plants and is thus not likely to predict plant responses to climate changes.


Asunto(s)
Cambio Climático , Plantas , Tamaño del Genoma , Plantas/genética , Estaciones del Año , Temperatura
3.
Am J Bot ; 108(11): 2127-2142, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34787899

RESUMEN

PREMISE: Environmental gradients of mountains are reflected in traits that are common to high-elevation plants worldwide. Closely related species of Senecio from the equatorial Andes grow as broad-leaved climbers in montane forests, basal broad-leaved rosette herbs in azonal marshy habitats, and ascending, narrow-leaved subshrubs in high-elevation páramo. Habitat variation along the elevational gradient enables testing whether modifications in leaf and stem functional traits among species were driven by contrasting environmental conditions. METHODS: We used quantitative analyses to describe changes in morphological and anatomical traits of leaves and stems in 10 species from various habitats. We applied univariate (linear regression, hierarchical ANOVA) and multivariate (NMDS ordination, permutational MANOVA) techniques to examine the correlation of traits with the species' habitats and elevation. RESULTS: Species from the humid and frost-free montane forest develop xylem optimized for transport efficiency by increasing the internal diameter and length of the conduits. In contrast, páramo species are optimized toward hydraulic safety by producing narrower conduits and are more likely to prevent the risk of frost-induced cavitation. Moreover, species from the high-elevation páramo habitats present a set of water-transport-related anatomical traits of leaf lamina, allowing for efficient regulation of transpiration losses. CONCLUSIONS: Morphological and anatomical traits of leaves and stems in species of Senecio inhabiting montane forests and high-elevation páramo in the equatorial Andes demonstrate a trade-off between hydraulic safety and efficiency of water transport.


Asunto(s)
Agua , Xilema , Adaptación Fisiológica , Hojas de la Planta , Plantas , Árboles
4.
Front Plant Sci ; 12: 765719, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069621

RESUMEN

A major challenge in phylogenetics and -genomics is to resolve young rapidly radiating groups. The fast succession of species increases the probability of incomplete lineage sorting (ILS), and different topologies of the gene trees are expected, leading to gene tree discordance, i.e., not all gene trees represent the species tree. Phylogenetic discordance is common in phylogenomic datasets, and apart from ILS, additional sources include hybridization, whole-genome duplication, and methodological artifacts. Despite a high degree of gene tree discordance, species trees are often well supported and the sources of discordance are not further addressed in phylogenomic studies, which can eventually lead to incorrect phylogenetic hypotheses, especially in rapidly radiating groups. We chose the high-Andean Asteraceae genus Loricaria to shed light on the potential sources of phylogenetic discordance and generated a phylogenetic hypothesis. By accounting for paralogy during gene tree inference, we generated a species tree based on hundreds of nuclear loci, using Hyb-Seq, and a plastome phylogeny obtained from off-target reads during target enrichment. We observed a high degree of gene tree discordance, which we found implausible at first sight, because the genus did not show evidence of hybridization in previous studies. We used various phylogenomic analyses (trees and networks) as well as the D-statistics to test for ILS and hybridization, which we developed into a workflow on how to tackle phylogenetic discordance in recent radiations. We found strong evidence for ILS and hybridization within the genus Loricaria. Low genetic differentiation was evident between species located in different Andean cordilleras, which could be indicative of substantial introgression between populations, promoted during Pleistocene glaciations, when alpine habitats shifted creating opportunities for secondary contact and hybridization.

5.
Ecol Evol ; 7(16): 6455-6468, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28861248

RESUMEN

Changes in growth forms frequently accompany plant adaptive radiations, including páramo-a high-elevation treeless habitat type of the northern Andes. We tested whether diverse group of Senecio inhabiting montane forests and páramo represented such growth form changes. We also investigated the role of Andean geography and environment in structuring genetic variation of this group. We sampled 108 populations and 28 species of Senecio (focusing on species from former genera Lasiocephalus and Culcitium) and analyzed their genetic relationships and patterns of intraspecific variation using DNA fingerprinting (AFLPs) and nuclear DNA sequences (ITS). We partitioned genetic variation into environmental and geographical components. ITS-based phylogeny supported monophyly of a Lasiocephalus-Culcitium clade. A grade of herbaceous alpine Senecio species subtended the Lasiocephalus-Culcitium clade suggesting a change from the herbaceous to the woody growth form. Both ITS sequences and the AFLPs separated a group composed of the majority of páramo subshrubs from other group(s) comprising both forest and páramo species of various growth forms. These morphologically variable group(s) further split into clades encompassing both the páramo subshrubs and forest lianas, indicating independent switches among the growth forms and habitats. The finest AFLP genetic structure corresponded to morphologically delimited species except in two independent cases in which patterns of genetic variation instead reflected geography. Several morphologically variable species were genetically admixed, which suggests possible hybrid origins. Latitude and longitude accounted for 5%-8% of genetic variation in each of three AFLP groups, while the proportion of variation attributed to environment varied between 8% and 31% among them. A change from the herbaceous to the woody growth form is suggested for species of high-elevation Andean Senecio. Independent switches between habitats and growth forms likely occurred within the group. Hybridization likely played an important role in species diversification.

6.
Mol Ecol ; 25(18): 4593-610, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27482945

RESUMEN

The tropical Andes represent one of the world's biodiversity hot spots, but the evolutionary drivers generating their striking species diversity still remain poorly understood. In the treeless high-elevation Andean environments, Pleistocene glacial oscillations and niche differentiation are frequently hypothesized diversification mechanisms; however, sufficiently densely sampled population genetic data supporting this are still lacking. Here, we reconstruct the evolutionary history of Loricaria (Asteraceae), a plant genus endemic to the Andean treeless alpine zone, based on comprehensive population-level sampling of 289 individuals from 67 populations across the entire distribution ranges of its northern Andean species. Partly incongruent AFLP and plastid DNA markers reveal that the distinct genetic structure was shaped by a complex interplay of biogeography (spread along and across the cordilleras), history (Pleistocene glacial oscillations) and local ecological conditions. While plastid variation documents an early split or colonization of the northern Andes by at least two lineages, one of which further diversified, a major split in the AFLP data correlate with altitudinal ecological differentiation. This suggests that niche shifts may be important drivers of Andean diversification not only in forest-alpine transitions, but also within the treeless alpine zone itself. The patterns of genetic differentiation at the intraspecific level reject the hypothesized separation in spatially isolated cordilleras and instead suggest extensive gene flow among populations from distinct mountain chains. Our study highlights that leveraging highly variable markers against extensive population-level sampling is a promising approach to address mechanisms of rapid species diversifications.


Asunto(s)
Asteraceae/clasificación , Biodiversidad , Evolución Biológica , Filogenia , Altitud , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Colombia , ADN de Cloroplastos/genética , Ecuador , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...