Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 14(2): 448-463, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34908086

RESUMEN

In this study, a nanocellulose-based material showing anisotopic conductivity is introduced. The material has up to 1000 times higher conductivity along the dry-line boundary direction than along the radial direction. In addition to the material itself, the method to produce the material is novel and is based on the alignment of cationic cellulose nanofibers (c-CNFs) along the dry-line boundary of an evaporating droplet composed of c-CNFs in two forms and conductive multi-walled carbon nanotubes (MWCNTs). On the one hand, c-CNFs are used as a dispersant of MWCNTs, and on the other hand they are used as an additional suspension element to create the desired anisotropy. When the suspended c-CNF is left out, and the nanocomposite film is manufactured using the high energy sonicated c-CNF/MWCNT dispersion only, conductive anisotropy is not present but evenly conducting nanocomposite films are obtained. Therefore, we suggest that suspending additional c-CNFs in the c-CNF/MWCNT dispersion results in nanocomposite films with anisotropic conductivity. This is a new way to obtain nanocomposite films with substantial anisotropic conductivity.

2.
Biomacromolecules ; 21(12): 4857-4870, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33136375

RESUMEN

Engineering artificial skin constructs is an ongoing challenge. An ideal material for hosting skin cells is still to be discovered. A promising candidate is low-cost cellulose, which is commonly fabricated in the form of a mesh and is applied as a wound dressing. Unfortunately, the structure and the topography of current cellulose meshes are not optimal for cell growth. To enhance the surface structure and the physicochemical properties of a commercially available mesh, we coated the mesh with wood-derived cellulose nanofibrils (CNFs). Three different types of mesh coatings are proposed in this study as a skin cell carrier: positively charged cationic cellulose nanofibrils (cCNFs), negatively charged anionic cellulose nanofibrils (aCNFs), and a combination of these two materials (c+aCNFs). These cell carriers were seeded with normal human dermal fibroblasts (NHDFs) or with human adipose-derived stem cells (ADSCs) to investigate cell adhesion, spreading, morphology, and proliferation. The negatively charged aCNF coating significantly improved the proliferation of both cell types. The positively charged cCNF coating significantly enhanced the adhesion of ADSCs only. The number of NHDFs was similar on the cCNF coatings and on the noncoated pristine cellulose mesh. However, the three-dimensional (3D) structure of the cCNF coating promoted cell survival. The c+aCNF construct proved to combine benefits from both types of CNFs, which means that the c+aCNF cell carrier is a promising candidate for further application in skin tissue engineering.


Asunto(s)
Celulosa , Piel , Humanos , Hidrogeles , Células Madre , Ingeniería de Tejidos
3.
Nanomaterials (Basel) ; 10(2)2020 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-31979245

RESUMEN

Nanocellulose/nanocarbon composites are newly emerging smart hybrid materials containing cellulose nanoparticles, such as nanofibrils and nanocrystals, and carbon nanoparticles, such as "classical" carbon allotropes (fullerenes, graphene, nanotubes and nanodiamonds), or other carbon nanostructures (carbon nanofibers, carbon quantum dots, activated carbon and carbon black). The nanocellulose component acts as a dispersing agent and homogeneously distributes the carbon nanoparticles in an aqueous environment. Nanocellulose/nanocarbon composites can be prepared with many advantageous properties, such as high mechanical strength, flexibility, stretchability, tunable thermal and electrical conductivity, tunable optical transparency, photodynamic and photothermal activity, nanoporous character and high adsorption capacity. They are therefore promising for a wide range of industrial applications, such as energy generation, storage and conversion, water purification, food packaging, construction of fire retardants and shape memory devices. They also hold great promise for biomedical applications, such as radical scavenging, photodynamic and photothermal therapy of tumors and microbial infections, drug delivery, biosensorics, isolation of various biomolecules, electrical stimulation of damaged tissues (e.g., cardiac, neural), neural and bone tissue engineering, engineering of blood vessels and advanced wound dressing, e.g., with antimicrobial and antitumor activity. However, the potential cytotoxicity and immunogenicity of the composites and their components must also be taken into account.

4.
Nanomaterials (Basel) ; 9(2)2019 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-30699947

RESUMEN

Nanocellulose is cellulose in the form of nanostructures, i.e., features not exceeding 100 nm at least in one dimension. These nanostructures include nanofibrils, found in bacterial cellulose; nanofibers, present particularly in electrospun matrices; and nanowhiskers, nanocrystals, nanorods, and nanoballs. These structures can be further assembled into bigger two-dimensional (2D) and three-dimensional (3D) nano-, micro-, and macro-structures, such as nanoplatelets, membranes, films, microparticles, and porous macroscopic matrices. There are four main sources of nanocellulose: bacteria (Gluconacetobacter), plants (trees, shrubs, herbs), algae (Cladophora), and animals (Tunicata). Nanocellulose has emerged for a wide range of industrial, technology, and biomedical applications, namely for adsorption, ultrafiltration, packaging, conservation of historical artifacts, thermal insulation and fire retardation, energy extraction and storage, acoustics, sensorics, controlled drug delivery, and particularly for tissue engineering. Nanocellulose is promising for use in scaffolds for engineering of blood vessels, neural tissue, bone, cartilage, liver, adipose tissue, urethra and dura mater, for repairing connective tissue and congenital heart defects, and for constructing contact lenses and protective barriers. This review is focused on applications of nanocellulose in skin tissue engineering and wound healing as a scaffold for cell growth, for delivering cells into wounds, and as a material for advanced wound dressings coupled with drug delivery, transparency and sensorics. Potential cytotoxicity and immunogenicity of nanocellulose are also discussed.

5.
Biomacromolecules ; 18(12): 3936-3953, 2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-28960956

RESUMEN

This work investigates droplet-evaporated cellulose nanofiber (CNF) alignment and cell responses on CNF surfaces. Surfaces of unmodified (u-), anionic (a-), and cationic (c-) CNFs were fabricated using an evaporation-induced droplet-casting method and characterized in terms of degree of orientation. Circular variance (CV) values obtained using Cytospectre software to analyze the degree of orientation from AFM images showed a significantly higher degree of orientation on c- and u-CNF surfaces (average CV 0.27 and 0.24, respectively) compared to a-CNF surfaces (average CV 0.76). Quantitative analysis of surface roughness plots obtained from AFM images confirmed the difference between the direction of alignment versus the direction perpendicular to alignment. AFM images as well as observations during droplet evaporation indicated c-CNF alignment parallel to a dry-boundary line during droplet evaporation. Fibroblasts were cultured on the u-, a-, and c-CNF surfaces with or without a fibronectin (FN) coating for 48 h, and the cell response was evaluated in terms of cell viability, proliferation, morphology, and degree of orientation. Cell viability and proliferation were comparable to that on a control surface on the a-CNF and c-CNF surfaces. Although an FN coating slightly enhanced cell growth on the studied surfaces, uncoated a-CNF and c-CNF surfaces were able to support cell growth as well. The results showed cell orientation on aligned c-CNF surfaces, a finding that could be further utilized when guiding the growth of cells. We also showed that the alignment direction of c-CNFs and thus the cell orientation direction can be controlled with a contact-dispensing technique.


Asunto(s)
Celulosa/química , Nanofibras/administración & dosificación , Nanofibras/química , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Fibroblastos/efectos de los fármacos , Ratones , Nanocompuestos/química , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...