Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 3620, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365178

RESUMEN

Metastasis is the major cause of cancer-related deaths. Neuroblastoma (NB), a childhood tumor has been molecularly defined at the primary cancer site, however, the bone marrow (BM) as the metastatic niche of NB is poorly characterized. Here we perform single-cell transcriptomic and epigenomic profiling of BM aspirates from 11 subjects spanning three major NB subtypes and compare these to five age-matched and metastasis-free BM, followed by in-depth single cell analyses of tissue diversity and cell-cell interactions, as well as functional validation. We show that cellular plasticity of NB tumor cells is conserved upon metastasis and tumor cell type composition is NB subtype-dependent. NB cells signal to the BM microenvironment, rewiring via macrophage mgration inhibitory factor and midkine signaling specifically monocytes, which exhibit M1 and M2 features, are marked by activation of pro- and anti-inflammatory programs, and express tumor-promoting factors, reminiscent of tumor-associated macrophages. The interactions and pathways characterized in our study provide the basis for therapeutic approaches that target tumor-to-microenvironment interactions.


Asunto(s)
Neoplasias de la Médula Ósea , Neuroblastoma , Humanos , Niño , Médula Ósea/patología , Monocitos/metabolismo , Transcriptoma , Epigenómica , Neoplasias de la Médula Ósea/genética , Neoplasias de la Médula Ósea/metabolismo , Neoplasias de la Médula Ósea/patología , Neuroblastoma/metabolismo , Microambiente Tumoral/genética
2.
Chembiochem ; 24(17): e202300178, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37345897

RESUMEN

During recent years, accumulating evidence suggested that metal-based candidate drugs are promising modulators of cytoskeletal and cytoskeleton-associated proteins. This was substantiated by the identification and validation of actin, vimentin and plectin as targets of distinct ruthenium(II)- and platinum(II)-based modulators. Despite this, structural information about molecular interaction is scarcely available. Here, we compile the scattered reports about metal-based candidate molecules that influence the cytoskeleton, its associated proteins and explore their potential to interfere in cancer-related processes, including proliferation, invasion and the epithelial-to-mesenchymal transition. Advances in this field depend crucially on determining binding sites and on gaining comprehensive insight into molecular drug-target interactions. These are key steps towards establishing yet elusive structure-activity relationships.


Asunto(s)
Citoesqueleto , Microtúbulos , Citoesqueleto/metabolismo , Filamentos Intermedios/química , Filamentos Intermedios/metabolismo , Actinas
3.
Curr Opin Chem Biol ; 73: 102257, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599256

RESUMEN

Metal-based anticancer agents occupy a distinct chemical space due to their particular coordination geometry and reactivity. Despite the initial DNA-targeting paradigm for this class of compounds, it is now clear that they can also be tuned to target proteins in cells, depending on the metal and ligand scaffold. Since metallodrug discovery is dominated by phenotypic screenings, tailored proteomics strategies were crucial to identify and validate protein targets of several investigative and clinically advanced metal-based drugs. Here, such experimental approaches are discussed, which showed that metallodrugs based on ruthenium, gold, rhenium and even platinum, can selectively and specifically target proteins with clear-cut down-stream effects. Target identification strategies are expected to support significantly the mechanism-driven clinical translation of metal-based drugs.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Rutenio , Antineoplásicos/farmacología , Antineoplásicos/química , Platino (Metal)/química , Rutenio/farmacología , Rutenio/química , Oro , ADN , Complejos de Coordinación/química
4.
iScience ; 26(1): 105717, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36507225

RESUMEN

To investigate long COVID-19 syndrome (LCS) pathophysiology, we performed an exploratory study with blood plasma derived from three groups: 1) healthy vaccinated individuals without SARS-CoV-2 exposure; 2) asymptomatic recovered patients at least three months after SARS-CoV-2 infection and; 3) symptomatic patients at least 3 months after SARS-CoV-2 infection with chronic fatigue syndrome or similar symptoms, here designated as patients with long COVID-19 syndrome (LCS). Multiplex cytokine profiling indicated slightly elevated pro-inflammatory cytokine levels in recovered individuals in contrast to patients with LCS. Plasma proteomics demonstrated low levels of acute phase proteins and macrophage-derived secreted proteins in LCS. High levels of anti-inflammatory oxylipins including omega-3 fatty acids in LCS were detected by eicosadomics, whereas targeted metabolic profiling indicated high levels of anti-inflammatory osmolytes taurine and hypaphorine, but low amino acid and triglyceride levels and deregulated acylcarnitines. A model considering alternatively polarized macrophages as a major contributor to these molecular alterations is presented.

5.
Sci Rep ; 11(1): 23397, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34862437

RESUMEN

Pharmacovigilance aims at a better understanding of the molecular events triggered by medications to prevent adverse effects, which despite significant advances in our analytical repertoire plague the use of drugs until today. In this study, we find that clinically prescribed and commercially available pirenzepine may not be the correct compound. Pirenzepine can undergo an unexpected scaffold rearrangement from the pharmaceutical active ingredient (API) to a previously uncharacterized benzimidazole. The rearrangement occurs under highly acidic conditions, which were believed to favour the dihydrochloride formation of pirenzepine. The rearranged products of pirenzepine and the structurally related telenzepine have significantly decreased affinity for the muscarinic acetylcholine receptor, the pharmacological target of these compounds. Fortunately, in situ rearrangement after oral application is no safety issue, as we show that reaction kinetics in gastric acid prevent rearrangement. The research community should consider appropriate measures to perform reliable receiving inspections in the commercial supply of well described and frequently used chemicals, in particular if experiments yield unexpected results.


Asunto(s)
Ácido Gástrico/química , Pirenzepina/análogos & derivados , Pirenzepina/química , Receptores Muscarínicos/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Humanos , Espectroscopía de Resonancia Magnética , Conformación Molecular , Estructura Molecular , Farmacovigilancia , Pirenzepina/farmacología , Relación Estructura-Actividad
6.
Biomolecules ; 11(8)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34439896

RESUMEN

Endometriosis is a benign disease affecting one in ten women of reproductive age worldwide. Although the pain level is not correlated to the extent of the disease, it is still one of the cardinal symptoms strongly affecting the patients' quality of life. Yet, a molecular mechanism of this pathology, including the formation of pain, remains to be defined. Recent studies have indicated a close interaction between newly generated nerve cells and macrophages, leading to neurogenic inflammation in the pelvic area. In this context, the responsiveness of an endometriotic cell culture model was characterized upon inflammatory stimulation by employing a multi-omics approach, including proteomics, metabolomics and eicosanoid analysis. Differential proteomic profiling of the 12-Z endometriotic cell line treated with TNFα and IL1ß unexpectedly showed that the inflammatory stimulation was able to induce a protein signature associated with neuroangiogenesis, specifically including neuropilins (NRP1/2). Untargeted metabolomic profiling in the same setup further revealed that the endometriotic cells were capable of the autonomous production of 7,8-dihydrobiopterin (BH2), 7,8-dihydroneopterin, normetanephrine and epinephrine. These metabolites are related to the development of neuropathic pain and the former three were found up-regulated upon inflammatory stimulation. Additionally, 12-Z cells were found to secrete the mono-oxygenated oxylipin 16-HETE, a known inhibitor of neutrophil aggregation and adhesion. Thus, inflammatory stimulation of endometriotic 12-Z cells led to specific protein and metabolite expression changes suggesting a direct involvement of these epithelial-like cells in endometriosis pain development.


Asunto(s)
Línea Celular , Endometriosis/metabolismo , Células Epiteliales/metabolismo , Macrófagos/metabolismo , Neuronas/metabolismo , Dolor/metabolismo , Técnicas de Cultivo de Célula , Ciclo Celular , Eicosanoides/química , Femenino , Humanos , Inflamación , Metaboloma , Metabolómica , Fenotipo , Proteoma , Proteómica/métodos , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...