Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 533: 216-226, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30165299

RESUMEN

The development of self-healing materials opens perspectives to fabricate devices with unprecedented lifetimes and recyclability that can be integrated with flexible electronics. However, the timescale at which these materials operate remains an important challenge to overcome. This article describes the fast self-healing behavior of aluminum/iron polyphosphate metallo-gels and their hybrids with polyaniline and gives a detailed investigation of their electrical behaviors. The samples can be cut, molded and healed by manual handling. The rebuilding process is mediated by water uptake and was directly observed by environmental scanning electron microscopy. Metallo-gels with and without polyaniline can be mixed to give homogeneous samples, where the conducting polymer is uniformly distributed within the inorganic matrix. Cyclic voltammetry experiments showed that polyaniline behaves within the metallo-gel in the same manner as it does in aqueous electrolytes. Furthermore, polyaniline adds electronic conductivity to the originally ion-conducting polyphosphate metallo-gel, as demonstrated by impedance spectroscopy. The ionic and electronic conductivities are 1.3-1.7 × 10-2 S·cm-1 and 5.2 × 10-4 S·cm-1, respectively. Such properties result from the "free" and "bound" water within the hydrogel network and the dynamic nature of the aluminum-phosphate interactions within the supramolecular network. The features presented here make these materials good candidates to be used as moldable electroactive binders in carbon-based electrodes and in all-solid-state flexible separators for repairable electrochemical capacitors and batteries.

2.
ACS Appl Mater Interfaces ; 10(9): 8077-8085, 2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29462559

RESUMEN

Plastic debris is a major environmental concern, and to find effective ways to reuse polystyrene (PS) presents major challenges. Here, it is demonstrated that polystyrene foams impregnated with SnO2 are easily generated from plastic debris and can be applied to photocatalytic degradation of dyes. SnO2 nanoparticles were synthesized by a polymeric precursor method, yielding specific surface areas of 15 m2/g after heat treatment to 700 °C. Crystallinity, size, and shape of the SnO2 particles were assessed by X-ray diffraction (XRD) and transmission electron microscopy (TEM), demonstrating the preparation of crystalline spherical nanoparticles with sizes around 20 nm. When incorporated into PS foams, which were generated using a thermally induced phase separation (TIPS) process, the specific surface area increased to 48 m2/g. These PS/SnO2 nanofoams showed very good efficiency for photodegradation of rhodamine B, under UV irradiation, achieving up to 98.2% removal. In addition the PS/SnO2 nanofoams are shown to retain photocatalytic activity for up to five reuse cycles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...