Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 3823, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36882506

RESUMEN

Modern cutting edge technologies of chemical synthesis enable the production of unique nanostructures with excess energy and high reactivity. Uncontrolled use of such materials in the food industry and pharmacology entail a risk for the development of a nanotoxicity crisis. Using the methods of tensometry, mechanokinetic analysis, biochemical methods, and bioinformatics, the current study showed that chronic (for six months) intragastrical burdening of rats with aqueous nanocolloids (AN) ZnO and TiO2 caused violations of the pacemaker-dependent mechanisms of regulation of spontaneous and neurotransmitter-induced contractions of the gastrointestinal tract (GIT) smooth muscles (SMs), and transformed the contraction efficiency indices (AU, in Alexandria units). Under the same conditions, the fundamental principle of distribution of physiologically relevant differences in the numeric values of the mechanokinetic parameters of spontaneous SM contractions between different parts of GIT is violated, which can potentially cause its pathological changes. Using molecular docking, typical bonds in the interfaces of the interaction of these nanomaterials with myosin II, a component of the contractile apparatus of smooth muscle cells (SMC) were investigated. In this connection, the study addressed the question of possible competitive relations between ZnO and TiO2 nanoparticles and actin molecules for binding sites on the myosin II actin-interaction interface. In addition, using biochemical methods, it was shown that chronic long-term exposure to nanocolloids causes changes in the primary active ion transport systems of cell plasma membranes, the activity of marker liver enzymes and disrupts the blood plasma lipid profile, which indicates the hepatotoxic effect of these nanocolloids.


Asunto(s)
Actinas , Óxido de Zinc , Animales , Ratas , Simulación del Acoplamiento Molecular , Tracto Gastrointestinal , Proteínas del Citoesqueleto
2.
Nanomaterials (Basel) ; 12(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35889649

RESUMEN

Nitrogen- and oxygen-containing carbon nanoparticles (O, N-CDs) were prepared by a facile one-step solvothermal method using urea and citric acid precursors. This method is cost-effective and easily scalable, and the resulting O, N-CDs can be used without additional functionalization and sample pretreatment. The structure of O, N-CDs was characterized by TEM, AFM, Raman, UV-vis, and FTIR spectroscopies. The obtained O, N-CDs with a mean diameter of 4.4 nm can be easily dispersed in aqueous solutions. The colloidal aqueous solutions of O, N-CDs show significant photothermal responses under red-IR and radiofrequency (RF) irradiations. The as-prepared O, N-CDs have a bright temperature-dependent photoluminescence (PL). PL/PLE spectral maps were shown to be used for temperature evaluation purposes in the range of 30-50 °C. In such a way, the O, N-CDs could be used for biomedicine-related applications such as hyperthermia with simultaneous temperature estimation with PL imaging.

3.
ACS Omega ; 6(29): 18802-18810, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34337220

RESUMEN

A simple sensitive method for nonspecific recognition of armagnac, cognac, whiskey, and ethanol/water mixture was developed by using photoluminescence (PL) of carbon nanoparticles (NPs). The carbon NPs were synthesized from the mixture of urea and anhydrous citric acid, followed by few annealing processes to achieve the full effect by solvothermal carbonization. PL features of carbon NPs depend on the alcohol environments in which the NPs are dispersed. PL/PL excitation maps of the alcoholic beverages were mathematically treated, and a final principal component analysis diagram allows visualization of different clusters corresponding to each beverage. The optimal measurement conditions (concentration of NPs in colloidal solution and excitation wavelength) were defined to ensure a reliable recognition level.

4.
Nanomaterials (Basel) ; 10(7)2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32698314

RESUMEN

Hydrogen generation rate is one of the most important parameters which must be considered for the development of engineering solutions in the field of hydrogen energy applications. In this paper, the kinetics of hydrogen generation from oxidation of hydrogenated porous silicon nanopowders in water are analyzed in detail. The splitting of the Si-H bonds of the nanopowders and water molecules during the oxidation reaction results in powerful hydrogen generation. The described technology is shown to be perfectly tunable and allows us to manage the kinetics by: (i) varying size distribution and porosity of silicon nanoparticles; (ii) chemical composition of oxidizing solutions; (iii) ambient temperature. In particular, hydrogen release below 0 °C is one of the significant advantages of such a technological way of performing hydrogen generation.

5.
ACS Omega ; 5(11): 5638-5642, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32226839

RESUMEN

A special electronic tongue system based on photoelectric measurements on Si-Si/SiN X sensitive structures is reported. The sensing approach is based on measuring of minority carrier lifetime in silicon-based substrates using microwave-detected photoconductance decay. This inexpensive and environmentally friendly combinatorial electronic sensing platform is able to create characteristic electronic fingerprints of liquids, detect, and recognize them. In particular, an application of the optoelectronic tongue for recognition of vegetable oils and their mixtures is described.

6.
Nanoscale Res Lett ; 12(1): 129, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28235365

RESUMEN

Electronic scanning microscopy was used in the work to obtain the image and to identify the sizes of titanium dioxide (TiO2) nanoparticles 21 ± 5 nm. The qualitative and quantitative elemental analysis of the preparations of the caecum, antrum, myometrium, kidneys, and lungs of the rats, burdened with titanium dioxide, was also performed. It was established using the tenzometric method in the isometric mode that the accumulation of titanium dioxide in smooth muscles of the caecum resulted in the considerable, compared to the control, increase in the frequency of their spontaneous contractions, the decrease in the duration of the contraction-relaxation cycle, and the decrease in the indices of muscle functioning efficiency (the index of contractions in Montevideo units (MU) and the index of contractions in Alexandria units (AU)). In the same experimental conditions, there was not the increase, but the decrease in the frequency of spontaneous contractions, the duration of the contraction-relaxation cycle, and the increase in MU and AU indices in the smooth muscles of myometrium (in the group of rats, burdened with TiO2 for 30 days). It was also determined that TiO2 modulates both the mechanisms of the input of extracellular Ca2+ ions and the mechanisms of decreasing the concentration of these cations in smooth muscle cells of the caecum during the generation of the high potassium contraction. In these conditions, there is a considerable increase in the normalized maximal velocity of the contraction phase and the relaxation phase. It was demonstrated in the work that titanium dioxide also changes the cholinergic excitation in these muscles. The impact of titanium dioxide in the group of rats, burdened with TiO2, was accompanied with a considerable impairment of the kinetics of forming the tonic component of the oxytocin-induced contraction of the smooth muscles of myometrium.

7.
Biosens Bioelectron ; 66: 89-94, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25460887

RESUMEN

A phenomenon of changes in photoluminescence of porous silicon at variations in medium pH is proposed to be used as a basis for the biosensor system development. The method of conversion of a biochemical signal into an optical one is applied for direct determination of glucose and urea as well as for inhibitory analysis of heavy metal ions. Changes in the quantum yield of porous silicon photoluminescence occur at varying pH of the tested solution due to the enzyme-substrate reaction. When creating the biosensor systems, the enzymes urease and glucose oxidase (GOD) were used as a bioselective material; their optimal concentrations were experimentally determined. It was shown that the photoluminescence intensity of porous silicon increased by 1.7 times when increasing glucose concentration in the GOD-containing reaction medium from 0 to 3.0mM, and decreased by 1.45 times at the same increase in the urea concentration in the urease-containing reaction medium. The calibration curves of dependence of the biosensor system responses on the substrate concentrations are presented. It is shown that the presence of heavy metal ions (Cu(2+), Pb(2+), and Cd(2+)) in the tested solution causes an inhibition of the enzymatic reactions catalyzed by glucose oxidase and urease, which results in a restoration of the photoluminescence quantum yield of porous silicon. It is proposed to use this effect for the inhibitory analysis of heavy metal ions.


Asunto(s)
Técnicas Biosensibles/métodos , Glucosa/análisis , Mediciones Luminiscentes/métodos , Metales Pesados/análisis , Silicio/química , Urea/análisis , Enzimas Inmovilizadas/metabolismo , Glucosa Oxidasa/metabolismo , Penicillium/enzimología , Porosidad , Glycine max/enzimología , Ureasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...